7kd6
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7kd6]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7KD6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7KD6 FirstGlance]. <br> | <table><tr><td colspan='2'>[[7kd6]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7KD6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7KD6 FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7kd6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7kd6 OCA], [https://pdbe.org/7kd6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7kd6 RCSB], [https://www.ebi.ac.uk/pdbsum/7kd6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7kd6 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7kd6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7kd6 OCA], [https://pdbe.org/7kd6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7kd6 RCSB], [https://www.ebi.ac.uk/pdbsum/7kd6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7kd6 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == Disease == | ||
- | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref> | ||
- | == Function == | ||
- | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal alpha-subunit domains L1-CR and C-terminal alphaCT peptide; "microreceptor" [muIR]). The structure of the SCI-muIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 A. Remarkably, the alphaCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs. | ||
- | + | ==See Also== | |
- | + | *[[Insulin receptor 3D structures|Insulin receptor 3D structures]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Insulin Receptor L1-CR plus alphaCT fragment in co-complex with Fv 83-7 and single-chain insulin SCI-b
|