1sud
From Proteopedia
(Difference between revisions)
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/su/1sud_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/su/1sud_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sud ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sud ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | A version of subtilisin BPN' lacking the high affinity calcium site (site A) has been produced through genetic engineering methods, and its crystal structure refined at 1.8 A resolution. This protein and the corresponding version containing the calcium A site are described and compared. The deletion of residues 75-83 was made in the context of four site-specific replacements previously shown to stabilize subtilisin. The helix that in wild type is interrupted by the calcium binding loop, is continuous in the deletion mutant, with normal geometry. A few residues adjacent to the loop, principally those that were involved in calcium coordination, are repositioned and/or destabilized by the deletion. Because refolding is greatly facilitated by the absence of the Ca-loop, this protein offers a new vehicle for analysis and dissection of the folding reaction. This is among the largest internal changes to a protein to be described at atomic resolution. | ||
+ | |||
+ | Calcium-independent subtilisin by design.,Gallagher T, Bryan P, Gilliland GL Proteins. 1993 Jun;16(2):205-13. PMID:8332608<ref>PMID:8332608</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1sud" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
CALCIUM-INDEPENDENT SUBTILISIN BY DESIGN
|