2sas
From Proteopedia
(Difference between revisions)
(12 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2sas.jpg|left|200px]] | ||
- | + | ==STRUCTURE OF A SARCOPLASMIC CALCIUM-BINDING PROTEIN FROM AMPHIOXUS REFINED AT 2.4 ANGSTROMS RESOLUTION== | |
- | + | <StructureSection load='2sas' size='340' side='right'caption='[[2sas]], [[Resolution|resolution]] 2.40Å' scene=''> | |
- | + | == Structural highlights == | |
- | | | + | <table><tr><td colspan='2'>[[2sas]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Branchiostoma_lanceolatum Branchiostoma lanceolatum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2SAS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2SAS FirstGlance]. <br> |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | |
- | | | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2sas FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2sas OCA], [https://pdbe.org/2sas PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2sas RCSB], [https://www.ebi.ac.uk/pdbsum/2sas PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2sas ProSAT]</span></td></tr> | |
- | + | </table> | |
- | + | == Function == | |
- | + | [https://www.uniprot.org/uniprot/SCP2_BRALA SCP2_BRALA] Like parvalbumins, SCP's seem to be more abundant in fast contracting muscles, but no functional relationship can be established from this distribution. | |
- | + | == Evolutionary Conservation == | |
- | == | + | [[Image:Consurf_key_small.gif|200px|right]] |
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sa/2sas_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2sas ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
The three-dimensional structure of a sarcoplasmic Ca(2+)-binding protein from the protochordate amphioxus has been determined at 2.4 A resolution using multiple-isomorphous-replacement techniques. The refined model includes all 185 residues, three calcium ions, and one water molecule. The final crystallographic R-factor is 0.199. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.015 A and 2.8 degrees, respectively. The overall structure is highly compact and globular with a predominantly hydrophobic core, unlike the extended dumbbell-shaped structures of calmodulin or troponin C. There are four distinct domains with the typical helix-loop-helix Ca(2+)-binding motif (EF hand). The conformation of the pair of EF hands in the N-terminal half of the protein is unusual due to the presence of an aspartate residue in the twelfth position of the first Ca(2+)-binding loop, rather than the usual glutamate. The C-terminal half of the molecule contains one Ca(2+)-binding domain with a novel helix-loop-helix conformation and one Ca(2+)-binding domain that is no longer functional because of amino acid changes. The overall structure is quite similar to a sarcoplasmic Ca(2+)-binding protein from sandworm, although there is only about 12% amino acid sequence identity between them. The similarity of the structures of these two proteins suggests that all sarcoplasmic Ca(2+)-binding proteins will have the same general conformation, even though there is very little conservation of primary structure among the proteins from various species. | The three-dimensional structure of a sarcoplasmic Ca(2+)-binding protein from the protochordate amphioxus has been determined at 2.4 A resolution using multiple-isomorphous-replacement techniques. The refined model includes all 185 residues, three calcium ions, and one water molecule. The final crystallographic R-factor is 0.199. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.015 A and 2.8 degrees, respectively. The overall structure is highly compact and globular with a predominantly hydrophobic core, unlike the extended dumbbell-shaped structures of calmodulin or troponin C. There are four distinct domains with the typical helix-loop-helix Ca(2+)-binding motif (EF hand). The conformation of the pair of EF hands in the N-terminal half of the protein is unusual due to the presence of an aspartate residue in the twelfth position of the first Ca(2+)-binding loop, rather than the usual glutamate. The C-terminal half of the molecule contains one Ca(2+)-binding domain with a novel helix-loop-helix conformation and one Ca(2+)-binding domain that is no longer functional because of amino acid changes. The overall structure is quite similar to a sarcoplasmic Ca(2+)-binding protein from sandworm, although there is only about 12% amino acid sequence identity between them. The similarity of the structures of these two proteins suggests that all sarcoplasmic Ca(2+)-binding proteins will have the same general conformation, even though there is very little conservation of primary structure among the proteins from various species. | ||
- | + | Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution.,Cook WJ, Jeffrey LC, Cox JA, Vijay-Kumar S J Mol Biol. 1993 Jan 20;229(2):461-71. PMID:8429557<ref>PMID:8429557</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
+ | <div class="pdbe-citations 2sas" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Branchiostoma lanceolatum]] | [[Category: Branchiostoma lanceolatum]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Babu | + | [[Category: Babu YS]] |
- | [[Category: Cook | + | [[Category: Cook WJ]] |
- | [[Category: Cox | + | [[Category: Cox JA]] |
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
STRUCTURE OF A SARCOPLASMIC CALCIUM-BINDING PROTEIN FROM AMPHIOXUS REFINED AT 2.4 ANGSTROMS RESOLUTION
|