8d0z

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:00, 23 October 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[8d0z]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 Severe acute respiratory syndrome coronavirus 2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8D0Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8D0Z FirstGlance]. <br>
<table><tr><td colspan='2'>[[8d0z]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 Severe acute respiratory syndrome coronavirus 2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8D0Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8D0Z FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.7&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8d0z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8d0z OCA], [https://pdbe.org/8d0z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8d0z RCSB], [https://www.ebi.ac.uk/pdbsum/8d0z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8d0z ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8d0z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8d0z OCA], [https://pdbe.org/8d0z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8d0z RCSB], [https://www.ebi.ac.uk/pdbsum/8d0z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8d0z ProSAT]</span></td></tr>
</table>
</table>
Line 11: Line 12:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with wildtype SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain (RBD) via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants.
+
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.
-
Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody to antigenically distinct Omicron subvariants.,Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJC, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC J Clin Invest. 2023 Mar 2:e166844. doi: 10.1172/JCI166844. PMID:36862518<ref>PMID:36862518</ref>
+
Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants.,Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJC, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC J Clin Invest. 2023 Apr 17;133(8):e166844. doi: 10.1172/JCI166844. PMID:36862518<ref>PMID:36862518</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 8d0z" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 8d0z" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Spike protein 3D structures|Spike protein 3D structures]]
== References ==
== References ==
<references/>
<references/>

Current revision

S728-1157 IgG in complex with SARS-CoV-2-6P-Mut7 Spike protein (focused refinement)

PDB ID 8d0z

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools