1l7c
From Proteopedia
(Difference between revisions)
m (Protected "1l7c" [edit=sysop:move=sysop]) |
|||
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1l7c.png|left|200px]] | ||
- | + | ==alpha-catenin fragment, residues 385-651== | |
- | + | <StructureSection load='1l7c' size='340' side='right'caption='[[1l7c]], [[Resolution|resolution]] 2.50Å' scene=''> | |
- | You may | + | == Structural highlights == |
- | + | <table><tr><td colspan='2'>[[1l7c]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L7C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1L7C FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> | |
- | -- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1l7c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1l7c OCA], [https://pdbe.org/1l7c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1l7c RCSB], [https://www.ebi.ac.uk/pdbsum/1l7c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1l7c ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/CTNA1_MOUSE CTNA1_MOUSE] Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. May play a crucial role in cell differentiation.<ref>PMID:16325583</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/l7/1l7c_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1l7c ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | alpha-Catenin is an integral component of adherens junctions, where it links cadherins to the actin cytoskeleton. alpha-Catenin is also required for the colocalization of the nectin/afadin/ponsin adhesion system to adherens junctions, and it specifically associates with the nectin-binding protein afadin. A proteolytic fragment of alpha-catenin, residues 385-651, contains the afadin-binding site. The three-dimensional structure of this fragment comprises two side-by-side four-helix bundles, both of which are required for afadin binding. The alpha-catenin fragment 385-651 binds afadin more strongly than the full-length protein, suggesting that the full-length protein harbors a cryptic binding site for afadin. Comparison of the alpha-catenin 385-651 structure with the recently solved structure of the alpha-catenin M-fragment (Yang, J., Dokurno, P., Tonks, N. K., and Barford, D. (2001) EMBO J. 20, 3645-3656) reveals a surprising flexibility in the orientation of the two four-helix bundles. alpha-Catenin and the actin-binding protein vinculin share sequence and most likely structural similarity within their actin-binding domains. Despite this homology, actin binding requires additional sequences adjacent to this region. | ||
- | + | Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin.,Pokutta S, Drees F, Takai Y, Nelson WJ, Weis WI J Biol Chem. 2002 May 24;277(21):18868-74. Epub 2002 Mar 20. PMID:11907041<ref>PMID:11907041</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1l7c" style="background-color:#fffaf0;"></div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | == | + | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[Catenin]] | + | *[[Catenin 3D structures|Catenin 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
- | [[Category: Drees | + | [[Category: Drees F]] |
- | [[Category: Nelson | + | [[Category: Nelson WJ]] |
- | [[Category: Pokutta | + | [[Category: Pokutta S]] |
- | [[Category: Takai | + | [[Category: Takai Y]] |
- | [[Category: Weis | + | [[Category: Weis WI]] |
- | + | ||
- | + |
Current revision
alpha-catenin fragment, residues 385-651
|
Categories: Large Structures | Mus musculus | Drees F | Nelson WJ | Pokutta S | Takai Y | Weis WI