|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal Structure of the complex between M182T mutant of TEM-1 and a boronic acid inhibitor (NBF)== | | ==Crystal Structure of the complex between M182T mutant of TEM-1 and a boronic acid inhibitor (NBF)== |
- | <StructureSection load='1ny0' size='340' side='right' caption='[[1ny0]], [[Resolution|resolution]] 1.75Å' scene=''> | + | <StructureSection load='1ny0' size='340' side='right'caption='[[1ny0]], [[Resolution|resolution]] 1.75Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1ny0]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NY0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1NY0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1ny0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NY0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1NY0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=NBF:[(2-ETHOXY-1-NAPHTHOYL)AMINO]METHYLBORONIC+ACID'>NBF</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bla ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=NBF:[(2-ETHOXY-1-NAPHTHOYL)AMINO]METHYLBORONIC+ACID'>NBF</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ny0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ny0 OCA], [https://pdbe.org/1ny0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ny0 RCSB], [https://www.ebi.ac.uk/pdbsum/1ny0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ny0 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ny0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ny0 OCA], [http://pdbe.org/1ny0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ny0 RCSB], [http://www.ebi.ac.uk/pdbsum/1ny0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ny0 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/BLAT_ECOLX BLAT_ECOLX]] TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors. | + | [https://www.uniprot.org/uniprot/BLAT_ECOLX BLAT_ECOLX] TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 16: |
Line 15: |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ny/1ny0_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ny/1ny0_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 30: |
Line 29: |
| </div> | | </div> |
| <div class="pdbe-citations 1ny0" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 1ny0" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Beta-lactamase 3D structures|Beta-lactamase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: Beta-lactamase]] | + | [[Category: Large Structures]] |
- | [[Category: Blazquez, J]] | + | [[Category: Blazquez J]] |
- | [[Category: Caselli, E]] | + | [[Category: Caselli E]] |
- | [[Category: Minasov, G]] | + | [[Category: Minasov G]] |
- | [[Category: Prati, F]] | + | [[Category: Prati F]] |
- | [[Category: Shoichet, B K]] | + | [[Category: Shoichet BK]] |
- | [[Category: Wang, X]] | + | [[Category: Wang X]] |
- | [[Category: Acylation transition-state analog]]
| + | |
- | [[Category: Antibiotic resistance]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
BLAT_ECOLX TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Developing antimicrobials that are less likely to engender resistance has become an important design criterion as more and more drugs fall victim to resistance mutations. One hypothesis is that the more closely an inhibitor resembles a substrate, the more difficult it will be to develop resistant mutations that can at once disfavor the inhibitor and still recognize the substrate. To investigate this hypothesis, 10 transition-state analogues, of greater or lesser similarity to substrates, were tested for inhibition of TEM-1 beta-lactamase, the most widespread resistance enzyme to penicillin antibiotics. The inhibitors were also tested against four characteristic mutant enzymes: TEM-30, TEM-32, TEM-52, and TEM-64. The inhibitor most similar to the substrate, compound 10, was the most potent inhibitor of the WT enzyme, with a K(i) value of 64 nM. Conversely, compound 10 was the most susceptible to the TEM-30 (R244S) mutant, for which inhibition dropped by over 100-fold. The other inhibitors were relatively impervious to the TEM-30 mutant enzyme. To understand recognition and resistance to these transition-state analogues, the structures of four of these inhibitors in complex with TEM-1 were determined by X-ray crystallography. These structures suggest a structural basis for distinguishing inhibitors that mimic the acylation transition state and those that mimic the deacylation transition state; they also suggest how TEM-30 reduces the affinity of compound 10. In cell culture, this inhibitor reversed the resistance of bacteria to ampicillin, reducing minimum inhibitory concentrations of this penicillin by between 4- and 64-fold, depending on the strain of bacteria. Notwithstanding this activity, the resistance of TEM-30, which is already extant in the clinic, suggests that there can be resistance liabilities with substrate-based design.
Recognition and resistance in TEM beta-lactamase.,Wang X, Minasov G, Blazquez J, Caselli E, Prati F, Shoichet BK Biochemistry. 2003 Jul 22;42(28):8434-44. PMID:12859188[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang X, Minasov G, Blazquez J, Caselli E, Prati F, Shoichet BK. Recognition and resistance in TEM beta-lactamase. Biochemistry. 2003 Jul 22;42(28):8434-44. PMID:12859188 doi:10.1021/bi034242y
|