|
|
| (2 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | | | |
| | ==The structure of an aldolase from Prochlorococcus marinus== | | ==The structure of an aldolase from Prochlorococcus marinus== |
| - | <StructureSection load='3hjz' size='340' side='right' caption='[[3hjz]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='3hjz' size='340' side='right'caption='[[3hjz]], [[Resolution|resolution]] 1.90Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3hjz]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Prom9 Prom9]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HJZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3HJZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3hjz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Prochlorococcus_marinus_str._MIT_9312 Prochlorococcus marinus str. MIT 9312]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HJZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HJZ FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
| - | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PMT9312_0519, tal, Transaldose B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=74546 PROM9])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hjz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hjz OCA], [https://pdbe.org/3hjz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hjz RCSB], [https://www.ebi.ac.uk/pdbsum/3hjz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hjz ProSAT], [https://www.topsan.org/Proteins/MCSG/3hjz TOPSAN]</span></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transaldolase Transaldolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.2.1.2 2.2.1.2] </span></td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3hjz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hjz OCA], [http://pdbe.org/3hjz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3hjz RCSB], [http://www.ebi.ac.uk/pdbsum/3hjz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3hjz ProSAT], [http://www.topsan.org/Proteins/MCSG/3hjz TOPSAN]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/TAL_PROM9 TAL_PROM9]] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (By similarity). | + | [https://www.uniprot.org/uniprot/TAL_PROM9 TAL_PROM9] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (By similarity). |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 17: |
Line 15: |
| | <jmolCheckbox> | | <jmolCheckbox> |
| | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hj/3hjz_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hj/3hjz_consurf.spt"</scriptWhenChecked> |
| - | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| | <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| | </jmolCheckbox> | | </jmolCheckbox> |
| Line 33: |
Line 31: |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[Transaldolase|Transaldolase]] | + | *[[Transaldolase 3D structures|Transaldolase 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Prom9]] | + | [[Category: Large Structures]] |
| - | [[Category: Transaldolase]] | + | [[Category: Prochlorococcus marinus str. MIT 9312]] |
| - | [[Category: Cui, H]] | + | [[Category: Cui H]] |
| - | [[Category: Edwards, A M]] | + | [[Category: Edwards AM]] |
| - | [[Category: Joachimiak, A]] | + | [[Category: Joachimiak A]] |
| - | [[Category: Structural genomic]]
| + | [[Category: Savchenko A]] |
| - | [[Category: Savchenko, A]] | + | [[Category: Singer AU]] |
| - | [[Category: Singer, A U]] | + | [[Category: Xu X]] |
| - | [[Category: Xu, X]] | + | |
| - | [[Category: Cyanobacteria]]
| + | |
| - | [[Category: Fructose-6-phosphate erythrose-4-phosphate sedoheptulose-7-phosphate glyceraldehyde-3-phosphate]]
| + | |
| - | [[Category: Marine]]
| + | |
| - | [[Category: Mcsg]]
| + | |
| - | [[Category: Parachlorococcus]]
| + | |
| - | [[Category: Pentose shunt]]
| + | |
| - | [[Category: PSI, Protein structure initiative]]
| + | |
| - | [[Category: Transferase]]
| + | |
| Structural highlights
3hjz is a 1 chain structure with sequence from Prochlorococcus marinus str. MIT 9312. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Method: | X-ray diffraction, Resolution 1.9Å |
| Ligands: | , , , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN |
Function
TAL_PROM9 Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (By similarity).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Cyanophages infecting the marine cyanobacteria Prochlorococcus and Synechococcus encode and express genes for the photosynthetic light reactions. Sequenced cyanophage genomes lack Calvin cycle genes, however, suggesting that photosynthetic energy harvested via phage proteins is not used for carbon fixation. We report here that cyanophages carry and express a Calvin cycle inhibitor, CP12, whose host homologue directs carbon flux from the Calvin cycle to the pentose phosphate pathway (PPP). Phage CP12 was coexpressed with phage genes involved in the light reactions, deoxynucleotide biosynthesis, and the PPP, including a transaldolase gene that is the most prevalent PPP gene in cyanophages. Phage transaldolase was purified to homogeneity from several strains and shown to be functional in vitro, suggesting that it might facilitate increased flux through this key reaction in the host PPP, augmenting production of NADPH and ribose 5-phosphate. Kinetic measurements of phage and host transaldolases revealed that the phage enzymes have k(cat)/K(m) values only approximately one third of the corresponding host enzymes. The lower efficiency of phage transaldolase may be a tradeoff for other selective advantages such as reduced gene size: we show that more than half of host-like cyanophage genes are significantly shorter than their host homologues. Consistent with decreased Calvin cycle activity and increased PPP and light reaction activity under infection, the host NADPH/NADP ratio increased two-fold in infected cells. We propose that phage-augmented NADPH production fuels deoxynucleotide biosynthesis for phage replication, and that the selection pressures molding phage genomes involve fitness advantages conferred through mobilization of host energy stores.
Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism.,Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW Proc Natl Acad Sci U S A. 2011 Aug 15. PMID:21844365[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci U S A. 2011 Aug 15. PMID:21844365 doi:10.1073/pnas.1102164108
|