|
|
| (3 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | | | |
| | ==Structure of a mammalian small ribosomal subunit in complex with the Israeli Acute Paralysis Virus IRES (Class 1)== | | ==Structure of a mammalian small ribosomal subunit in complex with the Israeli Acute Paralysis Virus IRES (Class 1)== |
| - | <StructureSection load='6p4g' size='340' side='right'caption='[[6p4g]], [[Resolution|resolution]] 3.10Å' scene=''> | + | <SX load='6p4g' size='340' side='right' viewer='molstar' caption='[[6p4g]], [[Resolution|resolution]] 3.10Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6p4g]] is a 36 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P4G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6P4G FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6p4g]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P4G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6P4G FirstGlance]. <br> |
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6p4g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p4g OCA], [http://pdbe.org/6p4g PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6p4g RCSB], [http://www.ebi.ac.uk/pdbsum/6p4g PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6p4g ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.1Å</td></tr> |
| | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6p4g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p4g OCA], [https://pdbe.org/6p4g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6p4g RCSB], [https://www.ebi.ac.uk/pdbsum/6p4g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6p4g ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/G1TWL4_RABIT G1TWL4_RABIT]] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria. Acts as a PPP1R16B-dependent substrate of PPP1CA.[HAMAP-Rule:MF_03016] [[http://www.uniprot.org/uniprot/G1SS70_RABIT G1SS70_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3.[HAMAP-Rule:MF_03122] | + | [https://www.uniprot.org/uniprot/RS12_RABIT RS12_RABIT] Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit (PubMed:23873042, PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23873042, PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). Subunit of the 40S ribosomal complex (PubMed:23873042, PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857).<ref>PMID:23873042</ref> <ref>PMID:25601755</ref> <ref>PMID:26245381</ref> <ref>PMID:27863242</ref> <ref>PMID:30517857</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 17: |
Line 18: |
| | </div> | | </div> |
| | <div class="pdbe-citations 6p4g" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6p4g" style="background-color:#fffaf0;"></div> |
| | + | |
| | + | ==See Also== |
| | + | *[[Ribosome 3D structures|Ribosome 3D structures]] |
| | + | *[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| - | </StructureSection> | + | </SX> |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| | [[Category: Oryctolagus cuniculus]] | | [[Category: Oryctolagus cuniculus]] |
| - | [[Category: Acosta-Reyes, F J]] | + | [[Category: Acosta-Reyes FJ]] |
| - | [[Category: Fernandez, I S]] | + | [[Category: Fernandez IS]] |
| - | [[Category: Frank, J]] | + | [[Category: Frank J]] |
| - | [[Category: Neupane, R]] | + | [[Category: Neupane R]] |
| - | [[Category: Iapv]]
| + | |
| - | [[Category: Israeli acute paralysis virus ire]]
| + | |
| - | [[Category: Ribosome]]
| + | |
| - | [[Category: Small ribosomal subunit]]
| + | |
| Structural highlights
Function
RS12_RABIT Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit (PubMed:23873042, PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23873042, PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857). Subunit of the 40S ribosomal complex (PubMed:23873042, PubMed:25601755, PubMed:26245381, PubMed:27863242, PubMed:30517857).[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs.,Acosta-Reyes F, Neupane R, Frank J, Fernandez IS EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lomakin IB, Steitz TA. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature. 2013 Jul 21. doi: 10.1038/nature12355. PMID:23873042 doi:10.1038/nature12355
- ↑ Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY, Pestova TV, Spahn CM. Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Mol Cell. 2015 Feb 5;57(3):422-432. doi: 10.1016/j.molcel.2014.12.016. Epub 2015 , Jan 15. PMID:25601755 doi:http://dx.doi.org/10.1016/j.molcel.2014.12.016
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
- ↑ Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Burger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040. PMID:30517857 doi:http://dx.doi.org/10.1016/j.celrep.2018.11.040
- ↑ Acosta-Reyes F, Neupane R, Frank J, Fernandez IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474 doi:http://dx.doi.org/10.15252/embj.2019102226
|