7zm2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:59, 21 November 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/HSAD_MYCTU HSAD_MYCTU] Catalyzes the hydrolysis of a carbon-carbon bond in 4,5: 9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oate (4,9-DSHA) to yield 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oate (DOHNAA) and 2-hydroxy-hexa-2,4-dienoate (HHD). Is also able to catalyze the hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) and the synthetic analog 8-(2-chlorophenyl)-2-hydroxy-5-methyl-6-oxoocta-2,4-dienoic acid (HOPODA).<ref>PMID:19875455</ref>
[https://www.uniprot.org/uniprot/HSAD_MYCTU HSAD_MYCTU] Catalyzes the hydrolysis of a carbon-carbon bond in 4,5: 9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oate (4,9-DSHA) to yield 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oate (DOHNAA) and 2-hydroxy-hexa-2,4-dienoate (HHD). Is also able to catalyze the hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) and the synthetic analog 8-(2-chlorophenyl)-2-hydroxy-5-methyl-6-oxoocta-2,4-dienoic acid (HOPODA).<ref>PMID:19875455</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin &amp; Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyC(yne) ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser(114) residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 A. The identification of mycobacterial enzymes directly captured by the CyC(yne) probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
 +
 +
Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis.,Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G FEBS J. 2023 Mar;290(6):1563-1582. doi: 10.1111/febs.16645. Epub 2022 Oct 13. PMID:36197115<ref>PMID:36197115</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7zm2" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Current revision

Crystal structure of HsaD from Mycobacterium tuberculosis in complex with Cyclophostin-like inhibitor CyC8b

PDB ID 7zm2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools