|
|
(18 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2hpp.jpg|left|200px]]<br /><applet load="2hpp" size="350" color="white" frame="true" align="right" spinBox="true" | |
- | caption="2hpp, resolution 3.3Å" /> | |
- | '''STRUCTURES OF THE NONCOVALENT COMPLEXES OF HUMAN AND BOVINE PROTHROMBIN FRAGMENT 2 WITH HUMAN PPACK-THROMBIN'''<br /> | |
| | | |
- | ==Overview== | + | ==Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human ppack-thrombin== |
- | Both human and bovine prothrombin fragment 2 (the second kringle) have, been cocrystallized separately with human PPACK (D-Phe-Pro-Arg)-thrombin, and the structures of these noncovalent complexes have been determined and, refined (R = 0.155 and 0.157, respectively) at 3.3-A resolution using, X-ray crystallographic methods. The kringles interact with thrombin at a, site that has previously been proposed to be the heparin binding region., The latter is a highly electropositive surface near the C-terminal helix, of thrombin abundant in arginine and lysine residues. These form salt, bridges with acidic side chains of kringle 2. Somewhat unexpectedly, the, negative groups of the kringle correspond to an enlarged anionic center of, the lysine binding site of lysine binding kringles such as plasminogens K1, and K4 and TPA K2. The anionic motif is DGDEE in prothrombin kringle 2., The corresponding cationic center of the lysine binding site region has an, unfavorable Arg70Asp substitution, but Lys35 is conserved. However, the, folding of fragment 2 is different from that of prothrombin kringle 1 and, other kringles: the second outer loop possesses a distorted two-turn, helix, and the hairpin beta-turn of the second inner loop pivots at Val64, and Asp70 by 60 degrees. Lys35 is located on a turn of the helix, which, causes it to project into solvent space in the fragment 2-thrombin, complex, thereby devastating any vestige of the cationic center of the, lysine binding site. Since fragment 2 has not been reported to bind, lysine, it most likely has a different inherent folding conformation for, the second outer loop, as has also been observed to be the case with TPA, K2 and the urokinase kringle. The movement of the Val64-Asp70 beta-turn is, most likely a conformational change accompanying complexation, which, reveals a new heretofore unsuspected flexibility in kringles. The fragment, 2-thrombin complex is only the second cassette module-catalytic domain, structure to be determined for a multidomain blood protein and only the, third domain-domain interaction to be described among such proteins, the, others being factor Xa without a Gla domain and Ca2+ prothrombin fragment, 1 with a Gla domain and a kringle. | + | <StructureSection load='2hpp' size='340' side='right'caption='[[2hpp]], [[Resolution|resolution]] 3.30Å' scene=''> |
| + | == Structural highlights == |
| + | <table><tr><td colspan='2'>[[2hpp]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HPP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HPP FirstGlance]. <br> |
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.3Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0G7:D-PHENYLALANYL-N-[(3S)-6-CARBAMIMIDAMIDO-1-CHLORO-2-OXOHEXAN-3-YL]-L-PROLINAMIDE'>0G7</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hpp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hpp OCA], [https://pdbe.org/2hpp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hpp RCSB], [https://www.ebi.ac.uk/pdbsum/2hpp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hpp ProSAT]</span></td></tr> |
| + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/THRB_HUMAN THRB_HUMAN] Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:[https://omim.org/entry/613679 613679]. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.<ref>PMID:14962227</ref> <ref>PMID:6405779</ref> <ref>PMID:3771562</ref> <ref>PMID:3567158</ref> <ref>PMID:3801671</ref> <ref>PMID:3242619</ref> <ref>PMID:2719946</ref> <ref>PMID:1354985</ref> <ref>PMID:1421398</ref> <ref>PMID:1349838</ref> <ref>PMID:7865694</ref> <ref>PMID:7792730</ref> Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[https://omim.org/entry/601367 601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:[https://omim.org/entry/188050 188050]. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:[https://omim.org/entry/614390 614390]. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.<ref>PMID:11506076</ref> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/THRB_HUMAN THRB_HUMAN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.<ref>PMID:2856554</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hp/2hpp_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hpp ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | Both human and bovine prothrombin fragment 2 (the second kringle) have been cocrystallized separately with human PPACK (D-Phe-Pro-Arg)-thrombin, and the structures of these noncovalent complexes have been determined and refined (R = 0.155 and 0.157, respectively) at 3.3-A resolution using X-ray crystallographic methods. The kringles interact with thrombin at a site that has previously been proposed to be the heparin binding region. The latter is a highly electropositive surface near the C-terminal helix of thrombin abundant in arginine and lysine residues. These form salt bridges with acidic side chains of kringle 2. Somewhat unexpectedly, the negative groups of the kringle correspond to an enlarged anionic center of the lysine binding site of lysine binding kringles such as plasminogens K1 and K4 and TPA K2. The anionic motif is DGDEE in prothrombin kringle 2. The corresponding cationic center of the lysine binding site region has an unfavorable Arg70Asp substitution, but Lys35 is conserved. However, the folding of fragment 2 is different from that of prothrombin kringle 1 and other kringles: the second outer loop possesses a distorted two-turn helix, and the hairpin beta-turn of the second inner loop pivots at Val64 and Asp70 by 60 degrees. Lys35 is located on a turn of the helix, which causes it to project into solvent space in the fragment 2-thrombin complex, thereby devastating any vestige of the cationic center of the lysine binding site. Since fragment 2 has not been reported to bind lysine, it most likely has a different inherent folding conformation for the second outer loop, as has also been observed to be the case with TPA K2 and the urokinase kringle. The movement of the Val64-Asp70 beta-turn is most likely a conformational change accompanying complexation, which reveals a new heretofore unsuspected flexibility in kringles. The fragment 2-thrombin complex is only the second cassette module-catalytic domain structure to be determined for a multidomain blood protein and only the third domain-domain interaction to be described among such proteins, the others being factor Xa without a Gla domain and Ca2+ prothrombin fragment 1 with a Gla domain and a kringle. |
| | | |
- | ==Disease==
| + | Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin.,Arni RK, Padmanabhan K, Padmanabhan KP, Wu TP, Tulinsky A Biochemistry. 1993 May 11;32(18):4727-37. PMID:8387813<ref>PMID:8387813</ref> |
- | Known diseases associated with this structure: Dysprothrombinemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176930 176930]], Hyperprothrombinemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176930 176930]], Hypoprothrombinemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176930 176930]]
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 2HPP is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] with <scene name='pdbligand=CH2:'>CH2</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Thrombin Thrombin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.5 3.4.21.5] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HPP OCA].
| + | </div> |
| + | <div class="pdbe-citations 2hpp" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin., Arni RK, Padmanabhan K, Padmanabhan KP, Wu TP, Tulinsky A, Biochemistry. 1993 May 11;32(18):4727-37. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=8387813 8387813]
| + | *[[Thrombin 3D Structures|Thrombin 3D Structures]] |
| + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| + | [[Category: Bos taurus]] |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Protein complex]] | + | [[Category: Large Structures]] |
- | [[Category: Thrombin]]
| + | [[Category: Padmanabhan K]] |
- | [[Category: Padmanabhan, K.]] | + | [[Category: Tulinsky A]] |
- | [[Category: Tulinsky, A.]] | + | |
- | [[Category: CH2]]
| + | |
- | [[Category: hydrolase(serine proteinase)]]
| + | |
- | | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri Feb 15 17:33:11 2008''
| + | |
| Structural highlights
Disease
THRB_HUMAN Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14]
Function
THRB_HUMAN Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[15]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Both human and bovine prothrombin fragment 2 (the second kringle) have been cocrystallized separately with human PPACK (D-Phe-Pro-Arg)-thrombin, and the structures of these noncovalent complexes have been determined and refined (R = 0.155 and 0.157, respectively) at 3.3-A resolution using X-ray crystallographic methods. The kringles interact with thrombin at a site that has previously been proposed to be the heparin binding region. The latter is a highly electropositive surface near the C-terminal helix of thrombin abundant in arginine and lysine residues. These form salt bridges with acidic side chains of kringle 2. Somewhat unexpectedly, the negative groups of the kringle correspond to an enlarged anionic center of the lysine binding site of lysine binding kringles such as plasminogens K1 and K4 and TPA K2. The anionic motif is DGDEE in prothrombin kringle 2. The corresponding cationic center of the lysine binding site region has an unfavorable Arg70Asp substitution, but Lys35 is conserved. However, the folding of fragment 2 is different from that of prothrombin kringle 1 and other kringles: the second outer loop possesses a distorted two-turn helix, and the hairpin beta-turn of the second inner loop pivots at Val64 and Asp70 by 60 degrees. Lys35 is located on a turn of the helix, which causes it to project into solvent space in the fragment 2-thrombin complex, thereby devastating any vestige of the cationic center of the lysine binding site. Since fragment 2 has not been reported to bind lysine, it most likely has a different inherent folding conformation for the second outer loop, as has also been observed to be the case with TPA K2 and the urokinase kringle. The movement of the Val64-Asp70 beta-turn is most likely a conformational change accompanying complexation, which reveals a new heretofore unsuspected flexibility in kringles. The fragment 2-thrombin complex is only the second cassette module-catalytic domain structure to be determined for a multidomain blood protein and only the third domain-domain interaction to be described among such proteins, the others being factor Xa without a Gla domain and Ca2+ prothrombin fragment 1 with a Gla domain and a kringle.
Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin.,Arni RK, Padmanabhan K, Padmanabhan KP, Wu TP, Tulinsky A Biochemistry. 1993 May 11;32(18):4727-37. PMID:8387813[16]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang W, Fu Q, Zhou R, Wu W, Ding Q, Hu Y, Wang X, Wang H, Wang Z. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia. 2004 Jan;10(1):94-7. PMID:14962227
- ↑ Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol. 1983 Jun;54(2):245-54. PMID:6405779
- ↑ Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem. 1986 Nov 15;261(32):15045-8. PMID:3771562
- ↑ Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117-22. PMID:3567158
- ↑ Inomoto T, Shirakami A, Kawauchi S, Shigekiyo T, Saito S, Miyoshi K, Morita T, Iwanaga S. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood. 1987 Feb;69(2):565-9. PMID:3801671
- ↑ Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160-5. PMID:3242619
- ↑ Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078-82. PMID:2719946
- ↑ Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry. 1992 Aug 25;31(33):7457-62. PMID:1354985
- ↑ Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337-->Thr and Arg-388-->His). Blood. 1992 Nov 1;80(9):2275-80. PMID:1421398
- ↑ Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol. 1992 Feb;55(1):93-100. PMID:1349838
- ↑ James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis. 1994 Oct;5(5):841-4. PMID:7865694
- ↑ Degen SJ, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost. 1995 Feb;73(2):203-9. PMID:7792730
- ↑ Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
- ↑ Pihusch R, Buchholz T, Lohse P, Rubsamen H, Rogenhofer N, Hasbargen U, Hiller E, Thaler CJ. Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am J Reprod Immunol. 2001 Aug;46(2):124-31. PMID:11506076
- ↑ Glenn KC, Frost GH, Bergmann JS, Carney DH. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res. 1988 Nov-Dec;1(2):65-73. PMID:2856554
- ↑ Arni RK, Padmanabhan K, Padmanabhan KP, Wu TP, Tulinsky A. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin. Biochemistry. 1993 May 11;32(18):4727-37. PMID:8387813
|