Template:ABSTRACT PUBMED 8943190
From Proteopedia
(New page: <!-- This page is not licensed under the GNU FDL. This page contains an abstract from PubMed Central. The abstract on this page is material from PubMed Central contributed or licensed by i...) |
m (Protected "Template:ABSTRACT PUBMED 8943190" [edit=sysop:move=sysop]) |
Current revision
The structure of the Staphylococcus aureus alpha-hemolysin pore has been determined to 1.9 A resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 A in length, that runs along the sevenfold axis and ranges from 14 A to 46 A in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel beta barrel, to which each protomer contributes two beta strands, each 65 A long. The interior of the beta barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 A wide. The structure proves the heptameric subunit stoichiometry of the alpha-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of beta barrel pore-forming toxins.
Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore., Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE, Science. 1996 Dec 13;274(5294):1859-66. PMID:8943190
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
