2r97
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:2r97.png|left|200px]] | ||
- | < | + | ==Crystal structure of E. coli WrbA in complex with FMN== |
- | + | <StructureSection load='2r97' size='340' side='right'caption='[[2r97]], [[Resolution|resolution]] 2.00Å' scene=''> | |
- | You may | + | == Structural highlights == |
- | or the | + | <table><tr><td colspan='2'>[[2r97]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2R97 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2R97 FirstGlance]. <br> |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | |
- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene></td></tr> | |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2r97 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2r97 OCA], [https://pdbe.org/2r97 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2r97 RCSB], [https://www.ebi.ac.uk/pdbsum/2r97 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2r97 ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/NQOR_ECOLI NQOR_ECOLI] It seems to function in response to environmental stress when various electron transfer chains are affected or when the environment is highly oxidizing. It reduces quinones to the hydroquinone state to prevent interaction of the semiquinone with O2 and production of superoxide. It prefers NADH over NADPH.<ref>PMID:16672604</ref> <ref>PMID:9694845</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/r9/2r97_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2r97 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Two previously reported holoprotein crystal forms of the flavodoxin-like E. coli protein WrbA, diffracting to 2.6 and 2.0 A resolution, and new crystals of WrbA apoprotein diffracting to 1.85 A, are refined and analysed comparatively through the lens of flavodoxin structures. The results indicate that differences between apo- and holoWrbA crystal structures are manifested on many levels of protein organization as well as in the FMN-binding sites. Evaluation of the influence of crystal contacts by comparison of lattice packing reveals the protein's global response to FMN binding. Structural changes upon cofactor binding are compared with the monomeric flavodoxins. Topologically non-equivalent residues undergo remarkably similar local structural changes upon FMN binding to WrbA or to flavodoxin, despite differences in multimeric organization and residue types at the binding sites. Analysis of the three crystal structures described here, together with flavodoxin structures, rationalizes functional similarities and differences of the WrbAs relative to flavodoxins, leading to a new understanding of the defining features of WrbAs. The results suggest that WrbAs are not a remote and unusual branch of the flavodoxin family as previously thought but rather a central member with unifying structural features. | ||
- | + | Structural organization of WrbA in apo- and holoprotein crystals.,Wolfova J, Smatanova IK, Brynda J, Mesters JR, Lapkouski M, Kuty M, Natalello A, Chatterjee N, Chern SY, Ebbel E, Ricci A, Grandori R, Ettrich R, Carey J Biochim Biophys Acta. 2009 Sep;1794(9):1288-98. Epub 2009 Aug 7. PMID:19665595<ref>PMID:19665595</ref> | |
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 2r97" style="background-color:#fffaf0;"></div> | ||
- | == | + | ==See Also== |
- | + | *[[Flavodoxin 3D structures|Flavodoxin 3D structures]] | |
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Brynda J]] |
- | [[Category: | + | [[Category: Carey J]] |
- | [[Category: | + | [[Category: Grandori R]] |
- | [[Category: Smatanova | + | [[Category: Kuta Smatanova I]] |
- | [[Category: | + | [[Category: Mesters JR]] |
- | [[Category: | + | [[Category: Wolfova J]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal structure of E. coli WrbA in complex with FMN
|