3lg4
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:3lg4.jpg|left|200px]] | ||
- | < | + | ==Staphylococcus aureus V31Y, F92I mutant dihydrofolate reductase complexed with NADPH and 5-[(3S)-3-(5-methoxy-2',6'-dimethylbiphenyl-3-yl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine== |
- | + | <StructureSection load='3lg4' size='340' side='right'caption='[[3lg4]], [[Resolution|resolution]] 3.15Å' scene=''> | |
- | You may | + | == Structural highlights == |
- | + | <table><tr><td colspan='2'>[[3lg4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LG4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3LG4 FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.15Å</td></tr> | |
- | - | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=52V:5-[(3S)-3-(5-METHOXY-2,6-DIMETHYLBIPHENYL-3-YL)BUT-1-YN-1-YL]-6-METHYLPYRIMIDINE-2,4-DIAMINE'>52V</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3lg4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lg4 OCA], [https://pdbe.org/3lg4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3lg4 RCSB], [https://www.ebi.ac.uk/pdbsum/3lg4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3lg4 ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/DYR_STAAU DYR_STAAU] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lg/3lg4_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3lg4 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Drug resistance resulting from mutations to the target is an unfortunate common phenomenon that limits the lifetime of many of the most successful drugs. In contrast to the investigation of mutations after clinical exposure, it would be powerful to be able to incorporate strategies early in the development process to predict and overcome the effects of possible resistance mutations. Here we present a unique prospective application of an ensemble-based protein design algorithm, K( *), to predict potential resistance mutations in dihydrofolate reductase from Staphylococcus aureus using positive design to maintain catalytic function and negative design to interfere with binding of a lead inhibitor. Enzyme inhibition assays show that three of the four highly-ranked predicted mutants are active yet display lower affinity (18-, 9-, and 13-fold) for the inhibitor. A crystal structure of the top-ranked mutant enzyme validates the predicted conformations of the mutated residues and the structural basis of the loss of potency. The use of protein design algorithms to predict resistance mutations could be incorporated in a lead design strategy against any target that is susceptible to mutational resistance. | ||
- | + | Predicting resistance mutations using protein design algorithms.,Frey KM, Georgiev I, Donald BR, Anderson AC Proc Natl Acad Sci U S A. 2010 Jul 19. PMID:20643959<ref>PMID:20643959</ref> | |
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 3lg4" style="background-color:#fffaf0;"></div> | ||
- | + | ==See Also== | |
- | + | *[[Dihydrofolate reductase 3D structures|Dihydrofolate reductase 3D structures]] | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | [[Category: Large Structures]] |
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
- | [[Category: | + | |
[[Category: Staphylococcus aureus]] | [[Category: Staphylococcus aureus]] | ||
- | [[Category: Anderson | + | [[Category: Anderson AC]] |
- | [[Category: Frey | + | [[Category: Frey KM]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Staphylococcus aureus V31Y, F92I mutant dihydrofolate reductase complexed with NADPH and 5-[(3S)-3-(5-methoxy-2',6'-dimethylbiphenyl-3-yl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine
|