3nk2
From Proteopedia
(Difference between revisions)
m (Protected "3nk2" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Complex of 6-hydroxy-L-nicotine oxidase with dopamine== | |
+ | <StructureSection load='3nk2' size='340' side='right'caption='[[3nk2]], [[Resolution|resolution]] 2.65Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3nk2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Paenarthrobacter_nicotinovorans Paenarthrobacter nicotinovorans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NK2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3NK2 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.65Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GP7:(1R)-2-{[(S)-(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-1-[(PENTADECANOYLOXY)METHYL]ETHYL+(12E)-HEXADECA-9,12-DIENOATE'>GP7</scene>, <scene name='pdbligand=LDP:L-DOPAMINE'>LDP</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3nk2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nk2 OCA], [https://pdbe.org/3nk2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3nk2 RCSB], [https://www.ebi.ac.uk/pdbsum/3nk2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3nk2 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/HLNO_PAENI HLNO_PAENI] Involved in the degradation of L-nicotine (PubMed:5849820). Catalyzes the oxidation of (S)-6-hydroxynicotine (6-hydroxy-L-nicotine) to 6-hydroxypseudooxynicotine (PubMed:5849820, PubMed:4965794, PubMed:5646150, PubMed:21383134, PubMed:26744768, PubMed:28080034). Oxidation of the pyrrolidine ring of (S)-6-hydroxynicotine leads to the formation of the optically inactive 6-hydroxy-N-methylmyosmine, which hydrolyzes spontaneously to 6-hydroxypseudooxynicotine (PubMed:4965794, PubMed:21383134, PubMed:26744768, PubMed:28080034). Acts with absolute stereospecificity on the L-form of 6-hydroxynicotine (PubMed:4965794). Can also use (S)-6-hydroxynornicotine (PubMed:26744768, PubMed:28080034).<ref>PMID:21383134</ref> <ref>PMID:26744768</ref> <ref>PMID:28080034</ref> <ref>PMID:4965794</ref> <ref>PMID:5646150</ref> <ref>PMID:5849820</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The pathway for oxidative degradation of nicotine in Arthrobacter nicotinovorans includes two genetically and structurally unrelated flavoenzymes, 6-hydroxy-L-nicotine oxidase (6HLNO) and 6-hydroxy-D-nicotine oxidase, which act with absolute stereospecificity on the L- and D-forms, respectively, of 6-hydroxy-nicotine. We solved the crystal structure of 6HLNO at 1.95 A resolution by combined isomorphous/multiple-wavelength anomalous dispersion phasing. The overall structure of each subunit of the 6HLNO homodimer and the folds of the individual domains are closely similar as in eukaryotic monoamine oxidases. Unexpectedly, a diacylglycerophospholipid molecule was found to be non-covalently bound to each protomer of 6HLNO. The fatty acid chains occupy hydrophobic channels that penetrate deep into the interior of the substrate-binding domain of each subunit. The solvent-exposed glycerophosphate moiety is located at the subunit-subunit interface. We further solved the crystal structure of a complex of dithionite-reduced 6HLNO with the natural substrate 6-hydroxy-L-nicotine at 2.05 A resolution. The location of the substrate in a tight cavity suggests that the binding geometry of this unproductive complex may be closely similar as under oxidizing conditions. The observed orientation of the bound substrate relative to the isoalloxazine ring of the flavin adenine dinucleotide cofactor is suitable for hydride-transfer dehydrogenation at the carbon atom that forms the chiral center of the substrate molecule. A comparison of the substrate-binding modes of 6HLNO and 6-hydroxy-D-nicotine oxidase, based on models of complexes with the D-substrate, suggests an explanation for the stereospecificity of both enzymes. The two enzymes are proposed to orient the enantiomeric substrates in mirror symmetry with respect to the plane of the flavin. | ||
- | + | Crystal structure analysis of free and substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans.,Kachalova GS, Bourenkov GP, Mengesdorf T, Schenk S, Maun HR, Burghammer M, Riekel C, Decker K, Bartunik HD J Mol Biol. 2010 Feb 26;396(3):785-99. Epub 2009 Dec 16. PMID:20006620<ref>PMID:20006620</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 3nk2" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Paenarthrobacter nicotinovorans]] | ||
+ | [[Category: Bartunik HD]] | ||
+ | [[Category: Kachalova GS]] |
Current revision
Complex of 6-hydroxy-L-nicotine oxidase with dopamine
|