1qj0

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (04:50, 17 October 2024) (edit) (undo)
 
(12 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1qj0.png|left|200px]]
 
-
<!--
+
==HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR==
-
The line below this paragraph, containing "STRUCTURE_1qj0", creates the "Structure Box" on the page.
+
<StructureSection load='1qj0' size='340' side='right'caption='[[1qj0]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[1qj0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QJ0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1QJ0 FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
{{STRUCTURE_1qj0| PDB=1qj0 | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1qj0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qj0 OCA], [https://pdbe.org/1qj0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1qj0 RCSB], [https://www.ebi.ac.uk/pdbsum/1qj0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1qj0 ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qj/1qj0_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1qj0 ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The addition of phenols to hexameric insulin solutions produces a particularly stable hexamer, resulting from a rearrangement in which residues B1-B8 change from an extended conformation (T-state) to form an alpha-helix (R-state). The R-state is, in part, stabilized by nonpolar interactions between the phenolic molecule and residue B5 His at the dimer-dimer interface. The B5 His --&gt; Tyr mutant human insulin was constructed to see if the tyrosine side chain would mimic the effect of phenol binding in the hexamer and induce the R-state. In partial support of this hypothesis, the molecule crystallized as a half-helical hexamer (T(3)R(3)) in conditions that conventionally promote the fully nonhelical (T6) form. As expected, in the presence of phenol or resorcinol, the B5 Tyr hexamers adopt the fully helical (R6) conformation. Molecular modeling calculations were performed to investigate the conformational preference of the T-state B5 Tyr side chain in the T(3)R(3) form, this side chain being associated with structural perturbations of the A7-A10 loop in an adjacent hexamer. For an isolated dimer, several different orientations of the side chain were found, which were close in energy and readily interconvertible. In the crystal environment only one of these conformations remains low in energy; this conformation corresponds to that observed in the crystal structure. This suggests that packing constraints around residue B5 Tyr result in the observed structural rearrangements. Thus, rather than promoting the R-state in a manner analogous to phenol, the mutation appears to destabilize the T-state. These studies highlight the role of B5 His in determining hexamer conformation and in mediating crystal packing interactions, properties that are likely be important in vivo.
-
===HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR===
+
Structural consequences of the B5 histidine --&gt; tyrosine mutation in human insulin characterized by X-ray crystallography and conformational analysis.,Tang L, Whittingham JL, Verma CS, Caves LS, Dodson GG Biochemistry. 1999 Sep 14;38(37):12041-51. PMID:10508408<ref>PMID:10508408</ref>
-
 
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
<!--
+
</div>
-
The line below this paragraph, {{ABSTRACT_PUBMED_10508408}}, adds the Publication Abstract to the page
+
<div class="pdbe-citations 1qj0" style="background-color:#fffaf0;"></div>
-
(as it appears on PubMed at http://www.pubmed.gov), where 10508408 is the PubMed ID number.
+
-
-->
+
-
{{ABSTRACT_PUBMED_10508408}}
+
-
 
+
-
==About this Structure==
+
-
[[1qj0]] is a 4 chain structure of [[Molecular Playground/Insulin]] with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QJ0 OCA].
+
==See Also==
==See Also==
-
*[[Molecular Playground/Insulin]]
+
*[[Insulin 3D Structures|Insulin 3D Structures]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:010508408</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
-
[[Category: Caves, L S.D.]]
+
[[Category: Large Structures]]
-
[[Category: Dodson, G G.]]
+
[[Category: Caves LSD]]
-
[[Category: Tang, L.]]
+
[[Category: Dodson GG]]
-
[[Category: Verma, C S.]]
+
[[Category: Tang L]]
-
[[Category: Whittingham, J L.]]
+
[[Category: Verma CS]]
-
[[Category: Diabetes]]
+
[[Category: Whittingham JL]]
-
[[Category: Glucose metabolism]]
+
-
[[Category: Hormone]]
+
-
[[Category: Insulin mutant]]
+

Current revision

HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR

PDB ID 1qj0

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools