1fr6
From Proteopedia
(Difference between revisions)
m (Protected "1fr6" [edit=sysop:move=sysop]) |
|||
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1fr6.png|left|200px]] | ||
- | < | + | ==REFINED CRYSTAL STRUCTURE OF BETA-LACTAMASE FROM CITROBACTER FREUNDII INDICATES A MECHANISM FOR BETA-LACTAM HYDROLYSIS== |
- | + | <StructureSection load='1fr6' size='340' side='right'caption='[[1fr6]], [[Resolution|resolution]] 2.50Å' scene=''> | |
- | You may | + | == Structural highlights == |
- | + | <table><tr><td colspan='2'>[[1fr6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Citrobacter_freundii Citrobacter freundii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FR6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FR6 FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> | |
- | -- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AZR:2-({[(1Z)-1-(2-AMINO-1,3-THIAZOL-4-YL)-2-OXO-2-{[(2S,3S)-1-OXO-3-(SULFOAMINO)BUTAN-2-YL]AMINO}ETHYLIDENE]AMINO}OXY)-2-METHYLPROPANOIC+ACID'>AZR</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fr6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fr6 OCA], [https://pdbe.org/1fr6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fr6 RCSB], [https://www.ebi.ac.uk/pdbsum/1fr6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fr6 ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/Q46041_CITFR Q46041_CITFR] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fr/1fr6_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fr6 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Beta-Lactamases (EC 3.5.2.6, 'penicillinases') are a family of enzymes that protect bacteria against the lethal effects of cell-wall synthesis of penicillins, cephalosporins and related antibiotic agents, by hydrolysing the beta-lactam antibiotics to biologically inactive compounds. Their production can, therefore, greatly contribute to the clinical problem of antibiotic resistance. Three classes of beta-lactamases--A, B and C--have been identified on the basis of their amino-acid sequence; class B beta-lactamases are metalloenzymes, and are clearly distinct from members of class A and C beta-lactamases, which both contain an active-site serine residue involved in the formation of an acyl enzyme with beta-lactam substrates during catalysis. It has been predicted that class C beta-lactamases share common structural features with D,D-carboxypeptidases and class A beta-lactamases, and further, suggested that class A and class C beta-lactamases have the same evolutionary origin as other beta-lactam target enzymes. We report here the refined three-dimensional structure of the class C beta-lactamase from Citrobacter freundii at 2.0-A resolution and confirm the predicted structural similarity. The refined structure of the acyl-enzyme formed with the monobactam inhibitor aztreonam at 2.5-A resolution defines the enzyme's active site and, along with molecular modelling, indicates a mechanism for beta-lactam hydrolysis. This leads to the hypothesis that Tyr 150 functions as a general base during catalysis. | ||
- | + | Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis.,Oefner C, D'Arcy A, Daly JJ, Gubernator K, Charnas RL, Heinze I, Hubschwerlen C, Winkler FK Nature. 1990 Jan 18;343(6255):284-8. PMID:2300174<ref>PMID:2300174</ref> | |
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1fr6" style="background-color:#fffaf0;"></div> | ||
- | + | ==See Also== | |
- | + | *[[Beta-lactamase 3D structures|Beta-lactamase 3D structures]] | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | [[ | + | |
- | + | ||
- | == | + | |
- | < | + | |
- | + | ||
[[Category: Citrobacter freundii]] | [[Category: Citrobacter freundii]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: D'Arcy A]] |
- | [[Category: | + | [[Category: Daly JJ]] |
- | [[Category: | + | [[Category: Oefner C]] |
- | [[Category: | + | [[Category: Winkler FK]] |
- | + | ||
- | + | ||
- | + |
Current revision
REFINED CRYSTAL STRUCTURE OF BETA-LACTAMASE FROM CITROBACTER FREUNDII INDICATES A MECHANISM FOR BETA-LACTAM HYDROLYSIS
|