We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

3u0b

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: 200px <!-- The line below this paragraph, containing "STRUCTURE_3u0b", creates the "Structure Box" on the page. You may change the PDB parameter (which sets the PD...)
Current revision (12:27, 17 July 2024) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:3u0b.jpg|left|200px]]
 
-
<!--
+
==Crystal structure of an oxidoreductase from Mycobacterium smegmatis==
-
The line below this paragraph, containing "STRUCTURE_3u0b", creates the "Structure Box" on the page.
+
<StructureSection load='3u0b' size='340' side='right'caption='[[3u0b]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[3u0b]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3U0B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3U0B FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
-
{{STRUCTURE_3u0b| PDB=3u0b | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3u0b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3u0b OCA], [https://pdbe.org/3u0b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3u0b RCSB], [https://www.ebi.ac.uk/pdbsum/3u0b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3u0b ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/A0QPE7_MYCS2 A0QPE7_MYCS2]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an approximately 40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments. Fatty-acid synthesis (FAS) in bacteria proceeds via the type II pathway, which is substantially different from the type I pathway utilized in animals. This makes bacterial fatty-acid biosynthesis (Fab) enzymes appealing as drug targets. FabG is an essential FASII enzyme, and some bacteria, such as Mycobacterium tuberculosis, the causative agent of TB, harbor multiple homologs. FabG4 is a conserved, high-molecular-weight FabG (HMwFabG) that was first identified in M. tuberculosis and is distinct from the canonical low-molecular-weight FabG. Here, structural and functional analyses of Mycolicibacterium smegmatis FabG4, the third HMwFabG studied to date, are reported. Crystal structures of NAD(+) and apo MsFabG4, along with kinetic analyses, show that MsFabG4 preferentially binds and uses NADH when reducing CoA substrates. As M. smegmatis is often used as a model organism for M. tuberculosis, these studies may aid the development of drugs to treat TB and add to the growing body of research that distinguish HMwFabGs from the archetypal low-molecular-weight FabG.
-
===Crystal structure of an oxidoreductase from Mycobacterium smegmatis===
+
Structural and functional characterization of FabG4 from Mycolicibacterium smegmatis.,Ran X, Parikh P, Abendroth J, Arakaki TL, Clifton MC, Edwards TE, Lorimer DD, Mayclin S, Staker BL, Myler P, McLaughlin KJ Acta Crystallogr F Struct Biol Commun. 2024 Apr 1;80(Pt 4):82-91. doi: , 10.1107/S2053230X2400356X. Epub 2024 Apr 24. PMID:38656226<ref>PMID:38656226</ref>
-
 
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
==About this Structure==
+
</div>
-
[[3u0b]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Mycobacterium_smegmatis Mycobacterium smegmatis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3U0B OCA].
+
<div class="pdbe-citations 3u0b" style="background-color:#fffaf0;"></div>
-
[[Category: Mycobacterium smegmatis]]
+
== References ==
-
[[Category: Abendroth, J.]]
+
<references/>
-
[[Category: Arakaki, T L.]]
+
__TOC__
-
[[Category: Clifton, M.]]
+
</StructureSection>
-
[[Category: SSGCID, Seattle Structural Genomics Center for Infectious Disease.]]
+
[[Category: Large Structures]]
-
[[Category: Staker, B L.]]
+
[[Category: Mycolicibacterium smegmatis MC2 155]]
-
[[Category: Oxidoreductase]]
+
[[Category: Abendroth J]]
-
[[Category: Seattle structural genomics center for infectious disease]]
+
[[Category: Arakaki TL]]
-
[[Category: Ssgcid]]
+
[[Category: Clifton MC]]
-
[[Category: Structural genomic]]
+
[[Category: Staker BL]]

Current revision

Crystal structure of an oxidoreductase from Mycobacterium smegmatis

PDB ID 3u0b

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools