2ldj
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2ldj.png|left|200px]] | ||
- | + | ==1H Chemical Shift Assignments and structure of Trp-Cage mini-protein with D-amino acid== | |
- | + | <StructureSection load='2ldj' size='340' side='right'caption='[[2ldj]]' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[2ldj]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LDJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LDJ FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 1 model</td></tr> | |
- | -- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DGN:D-GLUTAMINE'>DGN</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ldj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ldj OCA], [https://pdbe.org/2ldj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ldj RCSB], [https://www.ebi.ac.uk/pdbsum/2ldj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ldj ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Judicious incorporation of d-amino acids in engineered proteins confers many advantages such as preventing degradation by endogenous proteases and promoting novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy termini can stabilize alpha-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-cage miniprotein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces both at the alpha-helix C-terminus and throughout the protein. | ||
- | + | Computational Design of Thermostabilizing d-Amino Acid Substitutions.,Rodriguez-Granillo A, Annavarapu S, Zhang L, Koder RL, Nanda V J Am Chem Soc. 2011 Nov 23;133(46):18750-9. Epub 2011 Oct 27. PMID:21978298<ref>PMID:21978298</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 2ldj" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | [[Category: Large Structures]] |
- | + | [[Category: Annavarapu S]] | |
- | + | [[Category: Granillo AR]] | |
- | == | + | [[Category: Koder R]] |
- | < | + | [[Category: Nanda V]] |
- | [[Category: Annavarapu | + | [[Category: Zhang L]] |
- | [[Category: Granillo | + | |
- | [[Category: Koder | + | |
- | [[Category: Nanda | + | |
- | [[Category: Zhang | + | |
- | + | ||
- | + | ||
- | + |
Current revision
1H Chemical Shift Assignments and structure of Trp-Cage mini-protein with D-amino acid
|