3hyb
From Proteopedia
(Difference between revisions)
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:3hyb.png|left|200px]] | ||
- | < | + | ==Crystal structure of RbcX from Anabaena, crystal form II== |
- | + | <StructureSection load='3hyb' size='340' side='right'caption='[[3hyb]], [[Resolution|resolution]] 2.30Å' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[3hyb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Anabaena_sp. Anabaena sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HYB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HYB FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hyb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hyb OCA], [https://pdbe.org/3hyb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hyb RCSB], [https://www.ebi.ac.uk/pdbsum/3hyb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hyb ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/RBCX_ANASC RBCX_ANASC] An RbcL-specific chaperone. The central cleft of the RbcX homodimer (RbcX2) binds the C-terminus of an RbcL monomer, stabilizing the C-terminus and probably preventing its reassociation with chaperonin GroEL-ES. At the same time the peripheral region of RbcX2 binds a second RbcL monomer, bridging the RbcL homodimers in the correct orientation. The RbcX2(2)-bound RbcL dimers then assemble into the RbcL8 core (RbcL8-(RbcX2)8). RbcS binding triggers the release of RbcX2 (PubMed:20075914, PubMed:21765418).[HAMAP-Rule:MF_00855]<ref>PMID:20075914</ref> <ref>PMID:21765418</ref> Required for optimal reconstitution of RuBisCO upon expression of rbcL-rbcS subunits in E.coli (PubMed:9171433).<ref>PMID:9171433</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hy/3hyb_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3hyb ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly. | ||
- | + | Coupled chaperone action in folding and assembly of hexadecameric Rubisco.,Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M Nature. 2010 Jan 14;463(7278):197-202. PMID:20075914<ref>PMID:20075914</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 3hyb" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | [[Category: Anabaena sp]] |
- | + | [[Category: Large Structures]] | |
- | + | [[Category: Bracher A]] | |
- | == | + | [[Category: Liu C]] |
- | < | + | |
- | [[Category: Anabaena sp | + | |
- | [[Category: | + | |
- | [[Category: | + | |
- | [[Category: | + | |
- | + | ||
- | + |
Current revision
Crystal structure of RbcX from Anabaena, crystal form II
|