4as3

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 4as3 is ON HOLD Authors: Infantes, L., Otero, L.H., Albert, A. Description: Pseudomonas Aeruginosa Phosphorylcholine Phosphatase. Orthorhombic form)
Current revision (02:41, 21 November 2024) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 4as3 is ON HOLD
+
==Pseudomonas Aeruginosa Phosphorylcholine Phosphatase. Orthorhombic form==
 +
<StructureSection load='4as3' size='340' side='right'caption='[[4as3]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[4as3]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AS3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AS3 FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4as3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4as3 OCA], [https://pdbe.org/4as3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4as3 RCSB], [https://www.ebi.ac.uk/pdbsum/4as3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4as3 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/PCHP_PSEAE PCHP_PSEAE] Catalyzes the hydrolysis of phosphorylcholine (PCho) to produce choline and inorganic phosphate (PubMed:10387109, PubMed:15886911, PubMed:17106798, PubMed:2116592). Can also hydrolyze phosphorylethanolamine and the nonphysiological substrate p-nitrophenylphosphate (pNPP) (PubMed:10387109, PubMed:15886911, PubMed:17106798, PubMed:2116592). Shows higher affinity and catalytic efficiency with phosphorylcholine as substrate (PubMed:2116592).<ref>PMID:10387109</ref> <ref>PMID:15886911</ref> <ref>PMID:17106798</ref> <ref>PMID:2116592</ref> Is probably involved in virulence (PubMed:19103776, Ref.3). The bacteria may break down various host compounds or host cell membranes through the coordinated action of phospholipase C and phosphocholine phosphatase. The final consequence of the action of these enzymes is an increase of the free choline concentration, which may promote the pathogenicity of P.aeruginosa (Ref.3).<ref>PMID:19103776</ref> <ref>PMID:15886911</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site-directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three-dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.
-
Authors: Infantes, L., Otero, L.H., Albert, A.
+
The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism.,Infantes L, Otero LH, Beassoni PR, Boetsch C, Lisa AT, Domenech CE, Albert A J Mol Biol. 2012 Aug 21. pii: S0022-2836(12)00608-0. doi:, 10.1016/j.jmb.2012.07.024. PMID:22922065<ref>PMID:22922065</ref>
-
Description: Pseudomonas Aeruginosa Phosphorylcholine Phosphatase. Orthorhombic form
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4as3" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Large Structures]]
 +
[[Category: Pseudomonas aeruginosa]]
 +
[[Category: Albert A]]
 +
[[Category: Infantes L]]
 +
[[Category: Otero LH]]

Current revision

Pseudomonas Aeruginosa Phosphorylcholine Phosphatase. Orthorhombic form

PDB ID 4as3

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools