Journal:JBIC:8
From Proteopedia
(Difference between revisions)

(15 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | <StructureSection load='Jbic8.pdb' size=' | + | <StructureSection load='Jbic8.pdb' size='450' side='right' scene='Journal:JBIC:8/Cv/1' caption=''> |
=== A hydrogen-bonding network formed by the B10-E7-E11 residues of a truncated hemoglobin from Tetrahymena pyriformis is critical for stability of bound oxygen and nitric oxide detoxification === | === A hydrogen-bonding network formed by the B10-E7-E11 residues of a truncated hemoglobin from Tetrahymena pyriformis is critical for stability of bound oxygen and nitric oxide detoxification === | ||
<big>Jotaro Igarashi, Kazuo Kobayashi and Ariki Matsuoka</big><ref>DOI 10.1007/s00775-011-0761-3</ref> | <big>Jotaro Igarashi, Kazuo Kobayashi and Ariki Matsuoka</big><ref>DOI 10.1007/s00775-011-0761-3</ref> | ||
Line 12: | Line 12: | ||
The three-dimensional structure of an <scene name='Journal:JBIC:8/Trhb/2'>Fe(II)-O2 complex of Tp trHb</scene> was determined at 1.73 Å resolution ([[3aq9]]). <scene name='Journal:JBIC:8/Trhb/3'>Tyr25 (B10) and Gln46 (E7) were hydrogen-bonded to a heme-bound dioxygen molecule</scene>. Tyr25 donated a hydrogen bond to the terminal oxygen atom, whereas Gln46 hydrogen-bonded to the proximal oxygen atom. Furthermore, <scene name='Journal:JBIC:8/Trhb/4'>Tyr25 was hydrogen-bonded to the Gln46 and Gln50 (E11) residues</scene>. | The three-dimensional structure of an <scene name='Journal:JBIC:8/Trhb/2'>Fe(II)-O2 complex of Tp trHb</scene> was determined at 1.73 Å resolution ([[3aq9]]). <scene name='Journal:JBIC:8/Trhb/3'>Tyr25 (B10) and Gln46 (E7) were hydrogen-bonded to a heme-bound dioxygen molecule</scene>. Tyr25 donated a hydrogen bond to the terminal oxygen atom, whereas Gln46 hydrogen-bonded to the proximal oxygen atom. Furthermore, <scene name='Journal:JBIC:8/Trhb/4'>Tyr25 was hydrogen-bonded to the Gln46 and Gln50 (E11) residues</scene>. | ||
- | The O<sub>2</sub> association and dissociation rate constants of ''T. pyriformis'' trHb were 5.5 μM<sup>-1</sup> s<sup>-1</sup>, and 0.18 s<sup>-1</sup>, respectively. The oxygen affinity was determined to be 33 nM. The autooxidation rate constant was 3.8 x 10<sup>-3</sup> h<sup>-1</sup>. These values are similar to those of <scene name='Journal:JBIC:8/Hbn/3'>HbN from Mycobacterium tuberculosis</scene>. Mutations at <scene name=' | + | The O<sub>2</sub> association and dissociation rate constants of ''T. pyriformis'' trHb were 5.5 μM<sup>-1</sup> s<sup>-1</sup>, and 0.18 s<sup>-1</sup>, respectively. The oxygen affinity was determined to be 33 nM. The autooxidation rate constant was 3.8 x 10<sup>-3</sup> h<sup>-1</sup>. These values are similar to those of <scene name='Journal:JBIC:8/Hbn/3'>HbN from Mycobacterium tuberculosis</scene>. |
+ | |||
+ | '''Mutations:''' | ||
+ | |||
+ | *Mutation at Tyr25: <scene name='43/435485/As/6'>Wildtype Y25 and mutant Y25F together</scene> and <scene name='43/435485/As/5'>animation of this scene</scene>. <jmol><jmolButton> | ||
+ | <script>if (_animating); anim pause;set echo bottom left; color echo white; font echo 20 sansserif;echo Animation Paused; else; anim resume; set echo off;endif;</script> | ||
+ | <text>Toggle Animation</text> | ||
+ | </jmolButton></jmol> | ||
+ | *Mutation at Gln46: <scene name='43/435485/Ad/4'>Wildtype Q46 and mutant Q46E together (animation)</scene> <jmol><jmolButton> | ||
+ | <script>if (_animating); anim pause;set echo bottom left; color echo white; font echo 20 sansserif;echo Animation Paused; else; anim resume; set echo off;endif;</script> | ||
+ | <text>Toggle Animation</text> | ||
+ | </jmolButton></jmol> | ||
+ | *Mutation at <scene name='Journal:JBIC:8/Trhb/11'>Gln50</scene> increased the O<sub>2</sub> dissociation and autooxidation rate constants, and partly disrupted the hydrogen-bonding network. | ||
An <scene name='Journal:JBIC:8/Ag/4'>Fe(III)-H2O complex of Tp trHb was formed following reaction of the Fe(II)-O2 complex of Tp trHb</scene>, in a crystal state, with nitric oxide. This suggests that ''Tp'' trHb functions in nitric oxide detoxification. | An <scene name='Journal:JBIC:8/Ag/4'>Fe(III)-H2O complex of Tp trHb was formed following reaction of the Fe(II)-O2 complex of Tp trHb</scene>, in a crystal state, with nitric oxide. This suggests that ''Tp'' trHb functions in nitric oxide detoxification. | ||
+ | '''PDB reference:''' Crystal structure of truncated hemoglobin from ''Tetrahymena pyriformis'', Fe(II)-O2 form [[3aq5]]; Crystal structure of truncated hemoglobin from ''Tetrahymena pyriformis'', Fe(III) form [[3aq6]]; Crystal structure of truncated hemoglobin from ''Tetrahymena pyriformis'', Y25F mutant, Fe(III) form [[3aq7]]; Crystal structure of truncated hemoglobin from ''Tetrahymena pyriformis'', Q46E mutant, Fe(III) form [[3aq8]]; Crystal structure of truncated hemoglobin from ''Tetrahymena pyriformis'', Q50E mutant, Fe(III) form [[3aq9]]. | ||
</StructureSection> | </StructureSection> | ||
<references/> | <references/> | ||
__NOEDITSECTION__ | __NOEDITSECTION__ |
Current revision
|
- ↑ Igarashi J, Kobayashi K, Matsuoka A. A hydrogen-bonding network formed by the B10-E7-E11 residues of a truncated hemoglobin from Tetrahymena pyriformis is critical for stability of bound oxygen and nitric oxide detoxification. J Biol Inorg Chem. 2011 Feb 5. PMID:21298303 doi:10.1007/s00775-011-0761-3
This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.