3cpt
From Proteopedia
(Difference between revisions)
m (Protected "3cpt" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:3cpt.png|left|200px]] | ||
- | + | ==MP1-p14 Scaffolding complex== | |
+ | <StructureSection load='3cpt' size='340' side='right'caption='[[3cpt]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3cpt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CPT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CPT FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cpt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cpt OCA], [https://pdbe.org/3cpt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cpt RCSB], [https://www.ebi.ac.uk/pdbsum/3cpt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cpt ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/LTOR3_HUMAN LTOR3_HUMAN] As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. Adapter protein that enhances the efficiency of the MAP kinase cascade facilitating the activation of MAPK2.<ref>PMID:20381137</ref> <ref>PMID:22980980</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cp/3cpt_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3cpt ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Using the MP1-p14 scaffolding complex from the mitogen-activated protein kinase signaling pathway as model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. Hot spots are located by virtual alanine-scanning consensus predictions over three different energy functions and two different single-structure representations of the complex. Refined binding affinity predictions for select hot-spot mutations are carried out by applying first-principle methods such as the molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy (SIE) to the molecular dynamics (MD) trajectories for mutated and wild-type complexes. Here, predicted hot-spot residues were actually mutated to alanine, and crystal structures of the mutated complexes were determined. Two mutated MP1-p14 complexes were investigated, the p14(Y56A)-mutated complex and the MP1(L63A,L65A)-mutated complex. Alternative ways to generate MD ensembles for mutant complexes, not relying on crystal structures for mutated complexes, were also investigated. The SIE function, fitted on protein-ligand binding affinities, gave absolute binding affinity predictions in excellent agreement with experiment and outperformed standard MM-GBSA predictions when tested on the MD ensembles of Ras-Raf and Ras-RalGDS protein-protein complexes. For wild-type and mutant MP1-p14 complexes, SIE predictions of relative binding affinities were supported by a yeast two-hybrid assay that provided semiquantitative relative interaction strengths. Results on the MP1-mutated complex suggested that SIE predictions deteriorate if mutant MD ensembles are approximated by just mutating the wild-type MD trajectory. The SIE data on the p14-mutated complex indicated feasibility for generating mutant MD ensembles from mutated wild-type crystal structure, despite local structural differences observed upon mutation. For energetic considerations, this would circumvent costly needs to produce and crystallize mutated complexes. The sensitized protein-protein interface afforded by the p14(Y56A) mutation identified here has practical applications in screening-based discovery of first-generation small-molecule hits for further development into specific modulators of the mitogen-activated protein kinase signaling pathway. | ||
- | + | Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex.,Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, Naim M, Cygler M, Purisima EO J Mol Biol. 2008 Jun 13;379(4):787-802. Epub 2008 Apr 20. PMID:18479705<ref>PMID:18479705</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 3cpt" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[Mitogen-activated protein kinase kinase|Mitogen-activated protein kinase kinase]] | + | *[[Mitogen-activated protein kinase kinase 3D structures|Mitogen-activated protein kinase kinase 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
+ | [[Category: Large Structures]] | ||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
- | [[Category: Cygler | + | [[Category: Cygler M]] |
- | [[Category: Magloire | + | [[Category: Magloire A]] |
- | [[Category: Munger | + | [[Category: Munger C]] |
- | [[Category: Schrag | + | [[Category: Schrag JD]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
MP1-p14 Scaffolding complex
|