1g1v

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:06, 9 August 2023) (edit) (undo)
 
(10 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1g1v.png|left|200px]]
 
-
{{STRUCTURE_1g1v| PDB=1g1v | SCENE= }}
+
==T4 LYSOZYME MUTANT C54T/C97A/I58T==
 +
<StructureSection load='1g1v' size='340' side='right'caption='[[1g1v]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1g1v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G1V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G1V FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g1v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g1v OCA], [https://pdbe.org/1g1v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g1v RCSB], [https://www.ebi.ac.uk/pdbsum/1g1v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g1v ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g1/1g1v_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g1v ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
To investigate the structural and thermodynamic basis of the binding of solvent at internal sites within proteins a number of mutations were constructed in T4 lysozyme. Some of these were designed to introduce new solvent-binding sites. Others were intended to displace solvent from preexisting sites. In one case Val-149 was replaced with alanine, serine, cysteine, threonine, isoleucine, and glycine. Crystallographic analysis shows that, with the exception of isoleucine, each of these substitutions results in the binding of solvent at a polar site that is sterically blocked in the wild-type enzyme. Mutations designed to perturb or displace a solvent molecule present in the native enzyme included the replacement of Thr-152 with alanine, serine, cysteine, valine, and isoleucine. Although the solvent molecule was moved in some cases by up to 1.7 A, in no case was it completely removed from the folded protein. The results suggest that hydrogen bonds from the protein to bound solvent are energy neutral. The binding of solvent to internal sites within proteins also appears to be energy neutral except insofar as the bound solvent may prevent a loss of energy due to potential hydrogen bonding groups that would otherwise be unsatisfied. The introduction of a solvent-binding site appears to require not only a cavity to accommodate the water molecule but also the presence of polar groups to help satisfy its hydrogen-bonding potential. It may be easier to design a site to accommodate two or more water molecules rather than one as the solvent molecules can then hydrogen-bond to each other. For similar reasons it is often difficult to design a point mutation that will displace a single solvent molecule from the core of a protein.
-
===T4 LYSOZYME MUTANT C54T/C97A/I58T===
+
Structural and thermodynamic analysis of the binding of solvent at internal sites in T4 lysozyme.,Xu J, Baase WA, Quillin ML, Baldwin EP, Matthews BW Protein Sci. 2001 May;10(5):1067-78. PMID:11316887<ref>PMID:11316887</ref>
-
{{ABSTRACT_PUBMED_11316887}}
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
==About this Structure==
+
<div class="pdbe-citations 1g1v" style="background-color:#fffaf0;"></div>
-
[[1g1v]] is a 1 chain structure of [[Hen Egg-White (HEW) Lysozyme]] with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G1V OCA].
+
==See Also==
==See Also==
-
*[[Hen Egg-White (HEW) Lysozyme|Hen Egg-White (HEW) Lysozyme]]
+
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:011316887</ref><references group="xtra"/>
+
__TOC__
-
[[Category: Enterobacteria phage t4]]
+
</StructureSection>
-
[[Category: Lysozyme]]
+
[[Category: Escherichia virus T4]]
-
[[Category: Matthews, B W.]]
+
[[Category: Large Structures]]
-
[[Category: Quillin, M L.]]
+
[[Category: Matthews BW]]
-
[[Category: Hydrated cavity]]
+
[[Category: Quillin ML]]
-
[[Category: Hydrolase]]
+
-
[[Category: T4 lysozyme]]
+

Current revision

T4 LYSOZYME MUTANT C54T/C97A/I58T

PDB ID 1g1v

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools