2hh4
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2hh4.png|left|200px]] | ||
- | + | ==NMR structure of human insulin mutant GLY-B8-D-SER, HIS-B10-ASP PRO-B28-LYS, LYS-B29-PRO, 20 structures== | |
+ | <StructureSection load='2hh4' size='340' side='right'caption='[[2hh4]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2hh4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HH4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HH4 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 20 models</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DSN:D-SERINE'>DSN</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hh4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hh4 OCA], [https://pdbe.org/2hh4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hh4 RCSB], [https://www.ebi.ac.uk/pdbsum/2hh4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hh4 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hh/2hh4_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hh4 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | How insulin binds to the insulin receptor has long been a subject of speculation. Although the structure of the free hormone has been extensively characterized, a variety of evidence suggests that a conformational change occurs upon receptor binding. Here, we employ chiral mutagenesis, comparison of corresponding d and l amino acid substitutions, to investigate a possible switch in the B-chain. To investigate the interrelation of structure, function, and stability, isomeric analogs have been synthesized in which an invariant glycine in a beta-turn (Gly(B8)) is replaced by d- or l-Ser. The d substitution enhances stability (DeltaDeltaG(u) 0.9 kcal/mol) but impairs receptor binding by 100-fold; by contrast, the l substitution markedly impairs stability (DeltaDeltaG(u) -3.0 kcal/mol) with only 2-fold reduction in receptor binding. Although the isomeric structures each retain a native-like overall fold, the l-Ser(B8) analog exhibits fewer helix-related and long range nuclear Overhauser effects than does the d-Ser(B8) analog or native monomer. Evidence for enhanced conformational fluctuations in the unstable analog is provided by its attenuated CD spectrum. The inverse relationship between stereospecific stabilization and receptor binding strongly suggests that the B7-B10 beta-turn changes conformation on receptor binding. | ||
- | + | Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B chain.,Hua QX, Nakagawa S, Hu SQ, Jia W, Wang S, Weiss MA J Biol Chem. 2006 Aug 25;281(34):24900-9. Epub 2006 Jun 8. PMID:16762918<ref>PMID:16762918</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 2hh4" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[ | + | *[[Insulin 3D Structures|Insulin 3D Structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: Hu | + | [[Category: Large Structures]] |
- | [[Category: Hua | + | [[Category: Hu SQ]] |
- | [[Category: Jia | + | [[Category: Hua QX]] |
- | [[Category: Nakagawa | + | [[Category: Jia W]] |
- | [[Category: Weiss | + | [[Category: Nakagawa S]] |
- | + | [[Category: Weiss MA]] | |
- | + | ||
- | + | ||
- | + |
Current revision
NMR structure of human insulin mutant GLY-B8-D-SER, HIS-B10-ASP PRO-B28-LYS, LYS-B29-PRO, 20 structures
|
Categories: Homo sapiens | Large Structures | Hu SQ | Hua QX | Jia W | Nakagawa S | Weiss MA