2cxi
From Proteopedia
(Difference between revisions)
m (Protected "2cxi" [edit=sysop:move=sysop]) |
|||
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2cxi.png|left|200px]] | ||
- | + | ==Crystal Structure Of An N-terminal Fragment Of The Phenylalanyl-tRNA Synthetase Beta-Subunit From Pyrococcus Horikoshii== | |
+ | <StructureSection load='2cxi' size='340' side='right'caption='[[2cxi]], [[Resolution|resolution]] 1.94Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2cxi]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_horikoshii_OT3 Pyrococcus horikoshii OT3]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2CXI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2CXI FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.94Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2cxi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2cxi OCA], [https://pdbe.org/2cxi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2cxi RCSB], [https://www.ebi.ac.uk/pdbsum/2cxi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2cxi ProSAT], [https://www.topsan.org/Proteins/RSGI/2cxi TOPSAN]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/SYFB_PYRHO SYFB_PYRHO] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cx/2cxi_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2cxi ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | To achieve accurate aminoacylation of tRNAs with their cognate amino acids, errors in aminoacylation are corrected by the "editing" mechanism in several aminoacyl-tRNA synthetases. Phenylalanyl-tRNA synthetase (PheRS) hydrolyzes, or edits, misformed tyrosyl-tRNA with its editing domain in the beta subunit. We report the crystal structure of an N-terminal fragment of the PheRS beta subunit (PheRS-beta(N)) from the archaeon, Pyrococcus horikoshii, at 1.94-A resolution. PheRS-beta(N) includes the editing domain B3/4, which has archaea/eukarya-specific insertions/deletions and adopts a different orientation relative to other domains, as compared with that of bacterial PheRS. Surprisingly, most residues constituting the editing active-site pocket were substituted between the archaeal/eukaryal and bacterial PheRSs. We prepared Ala-substituted mutants of P. horikoshii PheRS for 16 editing-pocket residues, of which 12 are archaea/eukarya-specific and four are more widely conserved. On the basis of their activities, Tyr-adenosine was modeled on the B3/4-domain structure. First, the mutations of Leu-202, Ser-211, Asp-234, and Thr-236 made the PheRS incorrectly hydrolyze the cognate Phe-tRNA(Phe), indicating that these residues participate in the Tyr hydroxy group recognition and are responsible for discrimination against Phe. Second, the mutations of Leu-168 and Arg-223, which could interact with the tRNA 3'-terminal adenosine, reduced Tyr-tRNA(Phe) deacylation activity. Third, the mutations of archaea/eukarya-specific Gln-126, Glu-127, Arg-137, and Asn-217, which are proximal to the ester bond to be cleaved, also reduced Tyr-tRNA(Phe) deacylation activity. In particular, the replacement of Asn-217 abolished the activity, revealing its absolute requirement for the catalysis. | ||
- | + | Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase.,Sasaki HM, Sekine S, Sengoku T, Fukunaga R, Hattori M, Utsunomiya Y, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14744-9. Epub 2006 Sep 26. PMID:17003130<ref>PMID:17003130</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 2cxi" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[Aminoacyl tRNA | + | *[[Aminoacyl tRNA synthetase 3D structures|Aminoacyl tRNA synthetase 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
- | [[Category: | + | </StructureSection> |
- | [[Category: Pyrococcus horikoshii | + | [[Category: Large Structures]] |
- | + | [[Category: Pyrococcus horikoshii OT3]] | |
- | [[Category: Sasaki | + | [[Category: Sasaki H]] |
- | [[Category: Sekine | + | [[Category: Sekine S]] |
- | [[Category: Yokoyama | + | [[Category: Yokoyama S]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal Structure Of An N-terminal Fragment Of The Phenylalanyl-tRNA Synthetase Beta-Subunit From Pyrococcus Horikoshii
|