We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

1dnc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (21:59, 26 March 2025) (edit) (undo)
 
(17 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1dnc.gif|left|200px]]<br /><applet load="1dnc" size="350" color="white" frame="true" align="right" spinBox="true"
 
-
caption="1dnc, resolution 1.7&Aring;" />
 
-
'''HUMAN GLUTATHIONE REDUCTASE MODIFIED BY DIGLUTATHIONE-DINITROSO-IRON'''<br />
 
-
==Overview==
+
==HUMAN GLUTATHIONE REDUCTASE MODIFIED BY DIGLUTATHIONE-DINITROSO-IRON==
 +
<StructureSection load='1dnc' size='340' side='right'caption='[[1dnc]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1dnc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DNC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1DNC FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CSD:3-SULFINOALANINE'>CSD</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GSH:GLUTATHIONE'>GSH</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1dnc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dnc OCA], [https://pdbe.org/1dnc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1dnc RCSB], [https://www.ebi.ac.uk/pdbsum/1dnc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1dnc ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/GSHR_HUMAN GSHR_HUMAN] Maintains high levels of reduced glutathione in the cytosol.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dn/1dnc_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dnc ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH]2), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH]2 at 1.7 A resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH]2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO2H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.
Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH]2), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH]2 at 1.7 A resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH]2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO2H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.
-
==Disease==
+
Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers.,Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA Nat Struct Biol. 1998 Apr;5(4):267-71. PMID:9546215<ref>PMID:9546215</ref>
-
Known diseases associated with this structure: Hemolytic anemia due to glutathione reductase deficiency OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=138300 138300]], Mental retardation, autosomal recessive, 6 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=138244 138244]]
+
-
==About this Structure==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
1DNC is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] with <scene name='pdbligand=PO4:'>PO4</scene>, <scene name='pdbligand=FAD:'>FAD</scene> and <scene name='pdbligand=GTT:'>GTT</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Glutathione-disulfide_reductase Glutathione-disulfide reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.1.7 1.8.1.7] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DNC OCA].
+
</div>
 +
<div class="pdbe-citations 1dnc" style="background-color:#fffaf0;"></div>
-
==Reference==
+
==See Also==
-
Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers., Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA, Nat Struct Biol. 1998 Apr;5(4):267-71. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=9546215 9546215]
+
*[[Glutathione Reductase|Glutathione Reductase]]
-
[[Category: Glutathione-disulfide reductase]]
+
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
-
[[Category: Single protein]]
+
[[Category: Large Structures]]
-
[[Category: Becker, K.]]
+
[[Category: Becker K]]
-
[[Category: Karplus, P A.]]
+
[[Category: Karplus PA]]
-
[[Category: Keese, M.]]
+
[[Category: Keese M]]
-
[[Category: Savvides, S N.]]
+
[[Category: Savvides SN]]
-
[[Category: Schirmer, R H.]]
+
[[Category: Schirmer RH]]
-
[[Category: FAD]]
+
-
[[Category: GTT]]
+
-
[[Category: PO4]]
+
-
[[Category: nitric oxide]]
+
-
[[Category: oxidoreductase]]
+
-
[[Category: sulfhydryl oxidation]]
+
-
[[Category: sulfinic acid]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:18:25 2008''
+

Current revision

HUMAN GLUTATHIONE REDUCTASE MODIFIED BY DIGLUTATHIONE-DINITROSO-IRON

PDB ID 1dnc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools