3ahy

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:27, 1 November 2023) (edit) (undo)
 
(7 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:3ahy.png|left|200px]]
 
-
{{STRUCTURE_3ahy| PDB=3ahy | SCENE= }}
+
==Crystal structure of beta-glucosidase 2 from fungus Trichoderma reesei in complex with Tris==
 +
<StructureSection load='3ahy' size='340' side='right'caption='[[3ahy]], [[Resolution|resolution]] 1.63&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3ahy]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AHY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AHY FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.63&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ahy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ahy OCA], [https://pdbe.org/3ahy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ahy RCSB], [https://www.ebi.ac.uk/pdbsum/3ahy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ahy ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/O93785_HYPJE O93785_HYPJE]
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ah/3ahy_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3ahy ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
beta-Glucosidases (EC 3.2.1.21) cleave beta-glucosidic linkages in disaccharide or glucose-substituted molecules and play important roles in fundamental biological processes. beta-Glucosidases have been widely used in agricultural, biotechnological, industrial and medical applications. In this study, a high yield expression (70-250mg/l) in Escherichia coli of the three functional beta-glucosidase genes was obtained from the bacterium Clostridium cellulovorans (CcBglA), the fungus Trichoderma reesei (TrBgl2), and the termite Neotermes koshunensis (NkBgl) with the crystal structures of CcBglA, TrBgl2 and NkBgl, determined at 1.9A, 1.63A and 1.34A resolution, respectively. The overall structures of these enzymes are similar to those belonging to the beta-retaining glycosyl hydrolase family 1, which have a classical (alpha/beta)(8)-TIM barrel fold. Each contains a slot-like active site cleft and a more variable outer opening, related to its function in processing different lengths of beta-1,4-linked glucose derivatives. The two essential glutamate residues for hydrolysis are spatially conserved in the active site. In both TrBgl2 and NkBgl structures, a Tris molecule was found to bind at the active site, explaining the slight inhibition of hydrolase activity observed in Tris buffer. Manganese ions at 10mM exerted an approximate 2-fold enzyme activity enhancement of all three beta-glucosidases, with CcBglA catalyzing the most efficiently in hydrolysis reaction and tolerating Tris as well as some metal inhibition. In summary, our results for the structural and functional properties of these three beta-glucosidases from various biological sources open important avenues of exploration for further practical applications.
-
===Crystal structure of beta-glucosidase 2 from fungus Trichoderma reesei in complex with Tris===
+
Structural and functional analysis of three beta-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis.,Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ, Liu CI, Liang PH, Wang AH J Struct Biol. 2010 Aug 1. PMID:20682343<ref>PMID:20682343</ref>
-
{{ABSTRACT_PUBMED_20682343}}
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
==About this Structure==
+
<div class="pdbe-citations 3ahy" style="background-color:#fffaf0;"></div>
-
[[3ahy]] is a 4 chain structure of [[Beta-glucosidase]] with sequence from [http://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AHY OCA].
+
==See Also==
==See Also==
-
*[[Beta-glucosidase|Beta-glucosidase]]
+
*[[Beta-glucosidase 3D structures|Beta-glucosidase 3D structures]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:020682343</ref><references group="xtra"/>
+
__TOC__
-
[[Category: Beta-glucosidase]]
+
</StructureSection>
 +
[[Category: Large Structures]]
[[Category: Trichoderma reesei]]
[[Category: Trichoderma reesei]]
-
[[Category: Jeng, W Y.]]
+
[[Category: Jeng W-Y]]
-
[[Category: Liu, C I.]]
+
[[Category: Liu C-I]]
-
[[Category: Wang, A H.J.]]
+
[[Category: Wang AH-J]]
-
[[Category: Cellulase]]
+
-
[[Category: Glycosyl hydrolase]]
+
-
[[Category: Hydrolase]]
+
-
[[Category: Manganese enhancement]]
+

Current revision

Crystal structure of beta-glucosidase 2 from fungus Trichoderma reesei in complex with Tris

PDB ID 3ahy

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools