1wns
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1wns.png|left|200px]] | ||
- | + | ==Crystal structure of family B DNA polymerase from hyperthermophilic archaeon pyrococcus kodakaraensis KOD1== | |
+ | <StructureSection load='1wns' size='340' side='right'caption='[[1wns]], [[Resolution|resolution]] 3.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1wns]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis_KOD1 Thermococcus kodakarensis KOD1]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1gcx 1gcx]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WNS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WNS FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wns FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wns OCA], [https://pdbe.org/1wns PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wns RCSB], [https://www.ebi.ac.uk/pdbsum/1wns PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wns ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/DPOL_THEKO DPOL_THEKO] Intein encoded endonucleases are thought to mediate intein mobility by site-specific recombination initiated by endonuclease cleavage at the "homing site" in gene that lack the intein. PI-PkoI recognizes 5'-GATTTAGATCCCTGTACC-3' and PI-PkoII recognizes 5'-CAGCTACTACGGTTAC-3'. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wn/1wns_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1wns ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The crystal structure of family B DNA polymerase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) was determined. KOD DNA polymerase exhibits the highest known extension rate, processivity and fidelity. We carried out the structural analysis of KOD DNA polymerase in order to clarify the mechanisms of those enzymatic features. Structural comparison of DNA polymerases from hyperthermophilic archaea highlighted the conformational difference in Thumb domains. The Thumb domain of KOD DNA polymerase shows an "opened" conformation. The fingers subdomain possessed many basic residues at the side of the polymerase active site. The residues are considered to be accessible to the incoming dNTP by electrostatic interaction. A beta-hairpin motif (residues 242-249) extends from the Exonuclease (Exo) domain as seen in the editing complex of the RB69 DNA polymerase from bacteriophage RB69. Many arginine residues are located at the forked-point (the junction of the template-binding and editing clefts) of KOD DNA polymerase, suggesting that the basic environment is suitable for partitioning of the primer and template DNA duplex and for stabilizing the partially melted DNA structure in the high-temperature environments. The stabilization of the melted DNA structure at the forked-point may be correlated with the high PCR performance of KOD DNA polymerase, which is due to low error rate, high elongation rate and processivity. | ||
- | + | Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1.,Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y J Mol Biol. 2001 Feb 23;306(3):469-77. PMID:11178906<ref>PMID:11178906</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1wns" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[DNA polymerase|DNA polymerase]] | + | *[[DNA polymerase 3D structures|DNA polymerase 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
- | [[Category: | + | </StructureSection> |
- | [[Category: Thermococcus kodakarensis]] | + | [[Category: Large Structures]] |
- | [[Category: Fujiwara | + | [[Category: Thermococcus kodakarensis KOD1]] |
- | [[Category: Hashimoto | + | [[Category: Fujiwara S]] |
- | [[Category: Imanaka | + | [[Category: Hashimoto H]] |
- | [[Category: Inoue | + | [[Category: Imanaka T]] |
- | [[Category: Kai | + | [[Category: Inoue T]] |
- | [[Category: Nishioka | + | [[Category: Kai Y]] |
- | [[Category: Takagi | + | [[Category: Nishioka M]] |
- | + | [[Category: Takagi M]] |
Current revision
Crystal structure of family B DNA polymerase from hyperthermophilic archaeon pyrococcus kodakaraensis KOD1
|