1gks
From Proteopedia
(Difference between revisions)
(16 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1gks.gif|left|200px]]<br /><applet load="1gks" size="350" color="white" frame="true" align="right" spinBox="true" | ||
- | caption="1gks" /> | ||
- | '''ECTOTHIORHODOSPIRA HALOPHILA CYTOCHROME C551 (REDUCED), NMR, 37 STRUCTURES'''<br /> | ||
- | == | + | ==ECTOTHIORHODOSPIRA HALOPHILA CYTOCHROME C551 (REDUCED), NMR, 37 STRUCTURES== |
+ | <StructureSection load='1gks' size='340' side='right'caption='[[1gks]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1gks]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Halorhodospira_halophila Halorhodospira halophila]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GKS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GKS FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 37 models</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1gks FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gks OCA], [https://pdbe.org/1gks PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1gks RCSB], [https://www.ebi.ac.uk/pdbsum/1gks PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1gks ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/CY551_HALHA CY551_HALHA] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gk/1gks_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gks ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
The solution structure of the Ectothiorhodospira halophila ferrocytochrome c551 has been determined. This molecule belongs to a separate class of small bacterial cytochromes c for which no 3D structure has been reported so far. It is characterized by a very low redox potential (58 mV) and is isolated from the periplasm of halophilic purple phototrophic bacteria. For the 78 residue protein, 1445 NOE derived distance constraints were used in a combined simulated annealing/restrained molecular dynamics calculation. The final ensemble of 37 structures presents a backbone r.m.s.d. of less than 0.5 A compared to the mean structure. The physical viability of these structures was investigated by subjecting eight of them to a constraint free molecular dynamics simulation. No systematic conformational change was observed and the average backbone r.m.s.d. compared to the initial structures was less than 1.5 A. The structure of the E. halophila cytochrome c551 shows a striking resemblance to Azotobacter vinelandii cytochrome c5. Significant differences in backbone conformations occur in three small regions which are implicated in solvent protection of the heme propionates and thiomethyl-8(1). Comparison with Pseudomonas aeruginosa cytochrome c551 reveals that only the common cytochrome c core, i.e. three helices, is conserved. The folding of the protein chain around the heme propionates is very different and results in more efficient solvent protection in Ps. aeruginosa. The electrostatic surface of E. halophila cytochrome c551 was found to be significantly different from mitochondrial cytochromes c and bacterial cytochromes c2 but similar to that of Ps. aeruginosa cytochrome c551. | The solution structure of the Ectothiorhodospira halophila ferrocytochrome c551 has been determined. This molecule belongs to a separate class of small bacterial cytochromes c for which no 3D structure has been reported so far. It is characterized by a very low redox potential (58 mV) and is isolated from the periplasm of halophilic purple phototrophic bacteria. For the 78 residue protein, 1445 NOE derived distance constraints were used in a combined simulated annealing/restrained molecular dynamics calculation. The final ensemble of 37 structures presents a backbone r.m.s.d. of less than 0.5 A compared to the mean structure. The physical viability of these structures was investigated by subjecting eight of them to a constraint free molecular dynamics simulation. No systematic conformational change was observed and the average backbone r.m.s.d. compared to the initial structures was less than 1.5 A. The structure of the E. halophila cytochrome c551 shows a striking resemblance to Azotobacter vinelandii cytochrome c5. Significant differences in backbone conformations occur in three small regions which are implicated in solvent protection of the heme propionates and thiomethyl-8(1). Comparison with Pseudomonas aeruginosa cytochrome c551 reveals that only the common cytochrome c core, i.e. three helices, is conserved. The folding of the protein chain around the heme propionates is very different and results in more efficient solvent protection in Ps. aeruginosa. The electrostatic surface of E. halophila cytochrome c551 was found to be significantly different from mitochondrial cytochromes c and bacterial cytochromes c2 but similar to that of Ps. aeruginosa cytochrome c551. | ||
- | + | Ectothiorhodospira halophila ferrocytochrome c551: solution structure and comparison with bacterial cytochromes c.,Bersch B, Blackledge MJ, Meyer TE, Marion D J Mol Biol. 1996 Dec 6;264(3):567-84. PMID:8969306<ref>PMID:8969306</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1gks" style="background-color:#fffaf0;"></div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ==See Also== | |
+ | *[[Cytochrome C 3D structures|Cytochrome C 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Halorhodospira halophila]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Bersch B]] | ||
+ | [[Category: Blackledge MJ]] | ||
+ | [[Category: Marion D]] | ||
+ | [[Category: Meyer TE]] |
Current revision
ECTOTHIORHODOSPIRA HALOPHILA CYTOCHROME C551 (REDUCED), NMR, 37 STRUCTURES
|