3a4j

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:10, 1 November 2023) (edit) (undo)
 
(7 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:3a4j.png|left|200px]]
 
-
{{STRUCTURE_3a4j| PDB=3a4j | SCENE= }}
+
==arPTE (K185R/D208G/N265D/T274N)==
 +
<StructureSection load='3a4j' size='340' side='right'caption='[[3a4j]], [[Resolution|resolution]] 1.25&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3a4j]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Agrobacterium_tumefaciens Agrobacterium tumefaciens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A4J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A4J FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.25&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a4j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a4j OCA], [https://pdbe.org/3a4j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a4j RCSB], [https://www.ebi.ac.uk/pdbsum/3a4j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a4j ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/Q93LD7_RHIRD Q93LD7_RHIRD]
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a4/3a4j_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3a4j ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
To efficiently catalyze a chemical reaction, enzymes are required to maintain fast rates for formation of the Michaelis complex, the chemical reaction and product release. These distinct demands could be satisfied via fluctuation between different conformational substates (CSs) with unique configurations and catalytic properties. However, there is debate as to how these rapid conformational changes, or dynamics, exactly affect catalysis. As a model system, we have studied bacterial phosphotriesterase (PTE), which catalyzes the hydrolysis of the pesticide paraoxon at rates limited by a physical barrier-either substrate diffusion or conformational change. The mechanism of paraoxon hydrolysis is understood in detail and is based on a single, dominant, enzyme conformation. However, the other aspects of substrate turnover (substrate binding and product release), although possibly rate-limiting, have received relatively little attention. This work identifies "open" and "closed" CSs in PTE and dominant structural transition in the enzyme that links them. The closed state is optimally preorganized for paraoxon hydrolysis, but seems to block access to/from the active site. In contrast, the open CS enables access to the active site but is poorly organized for hydrolysis. Analysis of the structural and kinetic effects of mutations distant from the active site suggests that remote mutations affect the turnover rate by altering the conformational landscape.
-
===arPTE (K185R/D208G/N265D/T274N)===
+
Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase.,Jackson CJ, Foo JL, Tokuriki N, Afriat L, Carr PD, Kim HK, Schenk G, Tawfik DS, Ollis DL Proc Natl Acad Sci U S A. 2009 Dec 4. PMID:19966226<ref>PMID:19966226</ref>
-
{{ABSTRACT_PUBMED_19966226}}
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
==About this Structure==
+
<div class="pdbe-citations 3a4j" style="background-color:#fffaf0;"></div>
-
[[3a4j]] is a 1 chain structure of [[Phosphotriesterase]] with sequence from [http://en.wikipedia.org/wiki/Agrobacterium_tumefaciens Agrobacterium tumefaciens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A4J OCA].
+
==See Also==
==See Also==
-
*[[Phosphotriesterase|Phosphotriesterase]]
+
*[[Phosphotriesterase 3D structures|Phosphotriesterase 3D structures]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:019966226</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Agrobacterium tumefaciens]]
[[Category: Agrobacterium tumefaciens]]
-
[[Category: Aryldialkylphosphatase]]
+
[[Category: Large Structures]]
-
[[Category: Carr, P D.]]
+
[[Category: Carr PD]]
-
[[Category: Foo, J L.]]
+
[[Category: Foo JL]]
-
[[Category: Jackson, C J.]]
+
[[Category: Jackson CJ]]
-
[[Category: Ollis, D L.]]
+
[[Category: Ollis DL]]
-
[[Category: Hydrolase]]
+
-
[[Category: Phosphotriesterase]]
+

Current revision

arPTE (K185R/D208G/N265D/T274N)

PDB ID 3a4j

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools