3hkz
From Proteopedia
(Difference between revisions)
(7 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:3hkz.png|left|200px]] | ||
- | + | ==The X-ray crystal structure of RNA polymerase from Archaea== | |
+ | <StructureSection load='3hkz' size='340' side='right'caption='[[3hkz]], [[Resolution|resolution]] 3.40Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3hkz]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HKZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HKZ FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.4Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3hkz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3hkz OCA], [https://pdbe.org/3hkz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3hkz RCSB], [https://www.ebi.ac.uk/pdbsum/3hkz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3hkz ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/RPO5_SACS2 RPO5_SACS2] DNA-dependent RNA polymerase (RNAP) catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_00025] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hk/3hkz_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3hkz ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The transcription apparatus in Archaea can be described as a simplified version of its eukaryotic RNA polymerase (RNAP) II counterpart, comprising an RNAPII-like enzyme as well as two general transcription factors, the TATA-binding protein (TBP) and the eukaryotic TFIIB orthologue TFB. It has been widely understood that precise comparisons of cellular RNAP crystal structures could reveal structural elements common to all enzymes and that these insights would be useful in analysing components of each enzyme that enable it to perform domain-specific gene expression. However, the structure of archaeal RNAP has been limited to individual subunits. Here we report the first crystal structure of the archaeal RNAP from Sulfolobus solfataricus at 3.4 A resolution, completing the suite of multi-subunit RNAP structures from all three domains of life. We also report the high-resolution (at 1.76 A) crystal structure of the D/L subcomplex of archaeal RNAP and provide the first experimental evidence of any RNAP possessing an iron-sulphur (Fe-S) cluster, which may play a structural role in a key subunit of RNAP assembly. The striking structural similarity between archaeal RNAP and eukaryotic RNAPII highlights the simpler archaeal RNAP as an ideal model system for dissecting the molecular basis of eukaryotic transcription. | ||
- | + | The X-ray crystal structure of RNA polymerase from Archaea.,Hirata A, Klein BJ, Murakami KS Nature. 2008 Feb 14;451(7180):851-4. Epub 2008 Jan 30. PMID:18235446<ref>PMID:18235446</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 3hkz" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[RNA polymerase|RNA polymerase]] | + | *[[RNA polymerase 3D structures|RNA polymerase 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
- | [[Category: | + | </StructureSection> |
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Murakami | + | [[Category: Saccharolobus solfataricus P2]] |
- | + | [[Category: Murakami KS]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
The X-ray crystal structure of RNA polymerase from Archaea
|