2aw0

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:37, 1 May 2024) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:2aw0.png|left|200px]]
 
-
{{STRUCTURE_2aw0| PDB=2aw0 | SCENE= }}
+
==FOURTH METAL-BINDING DOMAIN OF THE MENKES COPPER-TRANSPORTING ATPASE, NMR, 20 STRUCTURES==
-
 
+
<StructureSection load='2aw0' size='340' side='right'caption='[[2aw0]]' scene=''>
-
===FOURTH METAL-BINDING DOMAIN OF THE MENKES COPPER-TRANSPORTING ATPASE, NMR, 20 STRUCTURES===
+
== Structural highlights ==
-
 
+
<table><tr><td colspan='2'>[[2aw0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AW0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2AW0 FirstGlance]. <br>
-
{{ABSTRACT_PUBMED_9437429}}
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
-
 
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AG:SILVER+ION'>AG</scene></td></tr>
-
==About this Structure==
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2aw0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2aw0 OCA], [https://pdbe.org/2aw0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2aw0 RCSB], [https://www.ebi.ac.uk/pdbsum/2aw0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2aw0 ProSAT]</span></td></tr>
-
[[2aw0]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AW0 OCA].
+
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN] Defects in ATP7A are the cause of Menkes disease (MNKD) [MIM:[https://omim.org/entry/309400 309400]; also known as kinky hair disease. MNKD is an X-linked recessive disorder of copper metabolism characterized by generalized copper deficiency. MNKD results in progressive neurodegeneration and connective-tissue disturbances: focal cerebral and cerebellar degeneration, early growth retardation, peculiar hair, hypopigmentation, cutis laxa, vascular complications and death in early childhood. The clinical features result from the dysfunction of several copper-dependent enzymes.<ref>PMID:10079817</ref> <ref>PMID:7977350</ref> <ref>PMID:8981948</ref> <ref>PMID:10401004</ref> <ref>PMID:10319589</ref> <ref>PMID:11241493</ref> <ref>PMID:11350187</ref> <ref>PMID:15981243</ref> <ref>PMID:22992316</ref> Defects in ATP7A are the cause of occipital horn syndrome (OHS) [MIM:[https://omim.org/entry/304150 304150]; also known as X-linked cutis laxa. OHS is an X-linked recessive disorder of copper metabolism. Common features are unusual facial appearance, skeletal abnormalities, chronic diarrhea and genitourinary defects. The skeletal abnormalities included occipital horns, short, broad clavicles, deformed radii, ulnae and humeri, narrowing of the rib cage, undercalcified long bones with thin cortical walls and coxa valga.<ref>PMID:9246006</ref> <ref>PMID:17108763</ref> Defects in ATP7A are a cause of distal spinal muscular atrophy X-linked type 3 (DSMAX3) [MIM:[https://omim.org/entry/300489 300489]. DSMAX3 is a neuromuscular disorder. Distal spinal muscular atrophy, also known as distal hereditary motor neuronopathy, represents a heterogeneous group of neuromuscular disorders caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.<ref>PMID:20170900</ref>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN] May supply copper to copper-requiring proteins within the secretory pathway, when localized in the trans-Golgi network. Under conditions of elevated extracellular copper, it relocalized to the plasma membrane where it functions in the efflux of copper from cells.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/aw/2aw0_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2aw0 ConSurf].
 +
<div style="clear:both"></div>
==See Also==
==See Also==
-
*[[ATPase|ATPase]]
+
*[[ATPase 3D structures|ATPase 3D structures]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:009437429</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
-
[[Category: Hydrogen/potassium-exchanging ATPase]]
+
[[Category: Large Structures]]
-
[[Category: Fairbrother, W J.]]
+
[[Category: Fairbrother WJ]]
-
[[Category: Gitschier, J.]]
+
[[Category: Gitschier J]]
-
[[Category: Copper transport]]
+
-
[[Category: Copper-binding domain]]
+
-
[[Category: Copper-transporting atpase]]
+
-
[[Category: Hydrolase]]
+

Current revision

FOURTH METAL-BINDING DOMAIN OF THE MENKES COPPER-TRANSPORTING ATPASE, NMR, 20 STRUCTURES

PDB ID 2aw0

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools