3utv
From Proteopedia
(Difference between revisions)
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:3utv.png|left|200px]] | ||
- | + | ==Crystal structure of bacteriorhodopsin mutant Y57F== | |
+ | <StructureSection load='3utv' size='340' side='right'caption='[[3utv]], [[Resolution|resolution]] 2.06Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3utv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Halobacterium_salinarum_NRC-1 Halobacterium salinarum NRC-1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UTV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UTV FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.06Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MC3:1,2-DIMYRISTOYL-RAC-GLYCERO-3-PHOSPHOCHOLINE'>MC3</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3utv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3utv OCA], [https://pdbe.org/3utv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3utv RCSB], [https://www.ebi.ac.uk/pdbsum/3utv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3utv ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The intricate functions of membrane proteins would not be possible without bends or breaks that are remarkably common in transmembrane helices. The frequent helix distortions are nevertheless surprising because backbone hydrogen bonds should be strong in an apolar membrane, potentially rigidifying helices. It is therefore mysterious how distortions can be generated by the evolutionary currency of random point mutations. Here we show that we can engineer a transition between distinct distorted helix conformations in bacteriorhodopsin with a single-point mutation. Moreover, we estimate the energetic cost of the conformational transitions to be smaller than 1 kcal/mol. We propose that the low energy of distortion is explained in part by the shifting of backbone hydrogen bonding partners. Consistent with this view, extensive backbone hydrogen bond shifts occur during helix conformational changes that accompany functional cycles. Our results explain how evolution has been able to liberally exploit transmembrane helix bending for the optimization of membrane protein structure, function, and dynamics. | ||
- | + | Shifting hydrogen bonds may produce flexible transmembrane helices.,Cao Z, Bowie JU Proc Natl Acad Sci U S A. 2012 May 22;109(21):8121-6. Epub 2012 May 7. PMID:22566663<ref>PMID:22566663</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 3utv" style="background-color:#fffaf0;"></div> | |
==See Also== | ==See Also== | ||
- | *[[Bacteriorhodopsin|Bacteriorhodopsin]] | + | *[[Bacteriorhodopsin 3D structures|Bacteriorhodopsin 3D structures]] |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | [[Category: | + | [[Category: Halobacterium salinarum NRC-1]] |
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Bowie JU]] |
- | [[Category: | + | [[Category: Cao Z]] |
- | + |
Current revision
Crystal structure of bacteriorhodopsin mutant Y57F
|