2klm
From Proteopedia
(Difference between revisions)
| (7 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | [[Image:2klm.png|left|200px]] | ||
| - | + | ==Solution Structure of L11 with SAXS and RDC== | |
| + | <StructureSection load='2klm' size='340' side='right'caption='[[2klm]]' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[2klm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KLM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KLM FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Hybrid , Solution NMR , X-ray solution scattering</td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2klm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2klm OCA], [https://pdbe.org/2klm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2klm RCSB], [https://www.ebi.ac.uk/pdbsum/2klm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2klm ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/RL11_THET8 RL11_THET8] One of the L7 dimers in conjuction with L11 and its bound segment of 23S rRNA forms what is known as the L7/L12 stalk, which extends beyond the surface of the 70S ribosome. The stalk is preferentially stabilized in 70S versus 50S crystals.[HAMAP-Rule:MF_00736_B] This protein binds directly to 23S ribosomal RNA.[HAMAP-Rule:MF_00736_B] In the 70S ribosome is in a position where it could interact transiently with the A site tRNA during translation.[HAMAP-Rule:MF_00736_B] | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/kl/2klm_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2klm ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Determining architectures of multicomponent proteins or protein complexes in solution is a challenging problem. Here we report a methodology that simultaneously uses residual dipolar couplings (RDC) and the small-angle X-ray scattering (SAXS) restraints to mutually orient subunits and define the global shape of multicomponent proteins and protein complexes. Our methodology is implemented in an efficient algorithm and demonstrated using five examples. First, we demonstrate the general approach with simulated data for the HIV-1 protease, a globular homodimeric protein. Second, we use experimental data to determine the structures of the two-domain proteins L11 and gammaD-Crystallin, in which the linkers between the domains are relatively rigid. Finally, complexes with K(d) values in the high micro- to millimolar range (weakly associating proteins), such as a homodimeric GB1 variant, and with K(d) values in the nanomolar range (tightly bound), such as the heterodimeric complex of the ILK ankyrin repeat domain (ARD) and PINCH LIM1 domain, respectively, are evaluated. Furthermore, the proteins or protein complexes that were determined using this method exhibit better solution structures than those obtained by either NMR or X-ray crystallography alone as judged based on the pair-distance distribution functions (PDDF) calculated from experimental SAXS data and back-calculated from the structures. | ||
| - | + | Determination of multicomponent protein structures in solution using global orientation and shape restraints.,Wang J, Zuo X, Yu P, Byeon IJ, Jung J, Wang X, Dyba M, Seifert S, Schwieters CD, Qin J, Gronenborn AM, Wang YX J Am Chem Soc. 2009 Aug 5;131(30):10507-15. PMID:19722627<ref>PMID:19722627</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | <div class="pdbe-citations 2klm" style="background-color:#fffaf0;"></div> | |
| - | + | ||
==See Also== | ==See Also== | ||
| - | *[[Ribosomal protein L11|Ribosomal protein L11]] | + | *[[Ribosomal protein L11 3D structures|Ribosomal protein L11 3D structures]] |
| - | + | == References == | |
| - | == | + | <references/> |
| - | < | + | __TOC__ |
| + | </StructureSection> | ||
| + | [[Category: Large Structures]] | ||
[[Category: Thermus thermophilus]] | [[Category: Thermus thermophilus]] | ||
| - | [[Category: Schwieters | + | [[Category: Schwieters CD]] |
| - | [[Category: Wang | + | [[Category: Wang J]] |
| - | [[Category: Wang | + | [[Category: Wang Y]] |
| - | [[Category: Yu | + | [[Category: Yu P]] |
| - | [[Category: Zuo | + | [[Category: Zuo X]] |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
Solution Structure of L11 with SAXS and RDC
| |||||||||||
Categories: Large Structures | Thermus thermophilus | Schwieters CD | Wang J | Wang Y | Yu P | Zuo X

