3a3o
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:3a3o.png|left|200px]] | ||
- | + | ==Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the five C-terminal residues== | |
+ | <StructureSection load='3a3o' size='340' side='right'caption='[[3a3o]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3a3o]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis Thermococcus kodakarensis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A3O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A3O FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a3o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a3o OCA], [https://pdbe.org/3a3o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a3o RCSB], [https://www.ebi.ac.uk/pdbsum/3a3o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a3o ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/TKSU_THEKO TKSU_THEKO] Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a3/3a3o_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3a3o ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Tk-subtilisin requires Ca(2+) for folding. This folding is accelerated by the chaperone function of its propeptide (Tkpro). Several Tkpro and Tk-subtilisin derivatives were constructed to examine whether the interactions between the C-terminal extended region of Tkpro and Tk-subtilisin and Glu61/Asp63- and Glu201-mediated hydrogen bonds at the domain interface are important for the chaperone function of Tkpro. The Tkpro derivatives with a series of C-terminal truncations and double mutations at Glu61 and Asp63 exhibited weaker chaperone functions than Tkpro for SA-subtilisin (active-site mutant of Tk-subtilisin). Good correlation was observed between their chaperone functions and binding abilities to the folded SA-subtilisin protein. These results suggest that the C-terminal extended region, Glu61, and Asp63 of Tkpro are not critical for folding of Tk-subtilisin but accelerate it by binding to a folding intermediate of Tk-subtilisin with a native-like structure at their binding sites. In contrast, Tkpro exhibited little chaperone function for E201A/SA-subtilisin. It could bind to the folded E201A/SA-subtilisin protein with a lower association constant than that for SA-subtilisin. These results suggest a loop of Tkpro, which interacts with Glu201 of Tk-subtilisin through hydrogen bonds and is required for folding of Tk-subtilisin by binding to a folding intermediate of Tk-subtilisin with a nonnative structure. Because this loop is fairly hydrophobic and tightly packs to the surface parallel helices of the central alphabetaalpha substructure of Tk-subtilisin, binding of this loop to Glu201 may induce association of these two helices and thereby formation of the alphabetaalpha substructure. We propose that Glu201-mediated interactions are critical for initiation of Tkpro-catalyzed folding of Tk-subtilisin. | ||
- | + | Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin.,Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S J Mol Biol. 2009 Nov 27;394(2):306-19. doi: 10.1016/j.jmb.2009.09.028. Epub 2009 , Sep 18. PMID:19766655<ref>PMID:19766655</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 3a3o" style="background-color:#fffaf0;"></div> | |
==See Also== | ==See Also== | ||
- | *[[Subtilisin|Subtilisin]] | + | *[[Subtilisin 3D structures|Subtilisin 3D structures]] |
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
[[Category: Thermococcus kodakarensis]] | [[Category: Thermococcus kodakarensis]] | ||
- | [[Category: Kanaya | + | [[Category: Kanaya S]] |
- | [[Category: Koga | + | [[Category: Koga Y]] |
- | [[Category: Matsumura | + | [[Category: Matsumura H]] |
- | [[Category: Takano | + | [[Category: Takano K]] |
- | [[Category: Tanaka | + | [[Category: Tanaka S]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the five C-terminal residues
|