1bu6
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1bu6.png|left|200px]] | ||
- | + | ==CRYSTAL STRUCTURES OF ESCHERICHIA COLI GLYCEROL KINASE AND THE MUTANT A65T IN AN INACTIVE TETRAMER: CONFORMATIONAL CHANGES AND IMPLICATIONS FOR ALLOSTERIC REGULATION== | |
+ | <StructureSection load='1bu6' size='340' side='right'caption='[[1bu6]], [[Resolution|resolution]] 2.37Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1bu6]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BU6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BU6 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.37Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bu6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bu6 OCA], [https://pdbe.org/1bu6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bu6 RCSB], [https://www.ebi.ac.uk/pdbsum/1bu6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bu6 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/GLPK_ECOLI GLPK_ECOLI] Key enzyme in the regulation of glycerol uptake and metabolism.[HAMAP-Rule:MF_00186] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bu/1bu6_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bu6 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Glycerol kinase (GK) from Escherichia coli is a velocity-modulated (V system) enzyme that has three allosteric effectors with independent mechanisms: fructose-1,6-bisphosphate (FBP); the phosphocarrier protein IIAGlc; and adenosine nucleotides. The enzyme exists in solution as functional dimers that associate reversibly to form tetramers. GK is a member of a superfamily of ATPases that share a common ATPase domain and are thought to undergo a large conformational change as an intrinsic step in their catalytic cycle. Members of this family include actin, hexokinase and the heat shock protein hsc70. RESULTS: We report here the crystal structures of GK and a mutant of GK (Ala65-->Thr) in complex with glycerol and ADP. Crystals of both enzymes contain the same 222 symmetric tetramer. The functional dimer is identical to that described previously for the IIAGlc-GK complex structure. The tetramer interface is significantly different, however, with a relative 22.3 degrees rotation and 6.34 A translation of one functional dimer. The overall monomer structure is unchanged except for two regions: the IIAGlc-binding site undergoes a structural rearrangement and residues 230-236 become ordered and bind orthophosphate at the tetramer interface. We also report the structure of a second mutant of GK (IIe474-->Asp) in complex with IIAGlc; this complex crystallized isomorphously to the wild type IIAGlc-GK complex. Site-directed mutants of GK with substitutions at the IIAGlc-binding site show significantly altered kinetic and regulatory properties, suggesting that the conformation of the binding site is linked to the regulation of activity. CONCLUSIONS: We conclude that the new tetramer structure presented here is an inactive form of the physiologically relevant tetramer. The structure and location of the orthophosphate-binding site is consistent with it being part of the FBP-binding site. Mutational analysis and the structure of the IIAGlc-GK(IIe474-->Asp) complex suggest the conformational transition of the IIAGlc-binding site to be an essential aspect of IIAGlc regulation. | ||
- | + | Glycerol kinase from Escherichia coli and an Ala65-->Thr mutant: the crystal structures reveal conformational changes with implications for allosteric regulation.,Feese MD, Faber HR, Bystrom CE, Pettigrew DW, Remington SJ Structure. 1998 Nov 15;6(11):1407-18. PMID:9817843<ref>PMID:9817843</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1bu6" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
*[[Glycerol kinase|Glycerol kinase]] | *[[Glycerol kinase|Glycerol kinase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Bystrom | + | [[Category: Bystrom CE]] |
- | [[Category: Faber | + | [[Category: Faber HR]] |
- | [[Category: Feese | + | [[Category: Feese MD]] |
- | [[Category: Pettigrew | + | [[Category: Pettigrew DW]] |
- | [[Category: Remington | + | [[Category: Remington SJ]] |
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
CRYSTAL STRUCTURES OF ESCHERICHIA COLI GLYCEROL KINASE AND THE MUTANT A65T IN AN INACTIVE TETRAMER: CONFORMATIONAL CHANGES AND IMPLICATIONS FOR ALLOSTERIC REGULATION
|