1m56
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1m56.png|left|200px]] | ||
- | + | ==Structure of cytochrome c oxidase from Rhodobactor sphaeroides (Wild Type)== | |
+ | <StructureSection load='1m56' size='340' side='right'caption='[[1m56]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1m56]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Cereibacter_sphaeroides Cereibacter sphaeroides]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M56 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1M56 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1m56 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m56 OCA], [https://pdbe.org/1m56 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1m56 RCSB], [https://www.ebi.ac.uk/pdbsum/1m56 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1m56 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/COX1_CERSP COX1_CERSP] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/m5/1m56_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1m56 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The structure of cytochrome c oxidase from Rhodobacter sphaeroides has been solved at 2.3/2.8A (anisotropic resolution). This high-resolution structure revealed atomic details of a bacterial terminal oxidase including water molecule positions and a potential oxygen pathway, which has not been reported in other oxidase structures. A comparative study of the wild-type and the EQ(I-286) mutant enzyme revealed structural rearrangements around E(I-286) that could be crucial for proton transfer in this enzyme. In the structure of the mutant enzyme, EQ(I-286), which cannot transfer protons during oxygen reduction, the side-chain of Q(I-286) does not have the hydrogen bond to the carbonyl oxygen of M(I-107) that is seen in the wild-type structure. Furthermore, the Q(I-286) mutant has a different arrangement of water molecules and residues in the vicinity of the Q side-chain. These differences between the structures could reflect conformational changes that take place upon deprotonation of E(I-286) during turnover of the wild-type enzyme, which could be part of the proton-pumping machinery of the enzyme. | ||
- | + | The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides.,Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S J Mol Biol. 2002 Aug 9;321(2):329-39. PMID:12144789<ref>PMID:12144789</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1m56" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[Cytochrome c oxidase|Cytochrome c oxidase]] | + | *[[Cytochrome c oxidase 3D structures|Cytochrome c oxidase 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
- | [[Category: | + | </StructureSection> |
- | [[Category: | + | [[Category: Cereibacter sphaeroides]] |
- | [[Category: Abramson | + | [[Category: Large Structures]] |
- | [[Category: Brezezinski | + | [[Category: Abramson J]] |
- | [[Category: Iwata | + | [[Category: Brezezinski P]] |
- | [[Category: Larsson | + | [[Category: Iwata S]] |
- | [[Category: Svensson-Ek | + | [[Category: Larsson G]] |
- | [[Category: Tornroth | + | [[Category: Svensson-Ek M]] |
- | + | [[Category: Tornroth S]] | |
- | + |
Current revision
Structure of cytochrome c oxidase from Rhodobactor sphaeroides (Wild Type)
|