1ab6
From Proteopedia
(Difference between revisions)
(10 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1ab6.png|left|200px]] | ||
- | + | ==STRUCTURE OF CHEY MUTANT F14N, V86T== | |
+ | <StructureSection load='1ab6' size='340' side='right'caption='[[1ab6]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1ab6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AB6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AB6 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ab6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ab6 OCA], [https://pdbe.org/1ab6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ab6 RCSB], [https://www.ebi.ac.uk/pdbsum/1ab6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ab6 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ab/1ab6_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ab6 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The crystal structures of two double mutants (F14N/V21T and F14N/V86T) of the signal transduction protein CheY have been determined to a resolution of 2.4 and 2.2 A, respectively. The structures were solved by molecular replacement and refined to final R values of 18.4 and 19.2%, respectively. Together with urea-denaturation experiments the structures have been used to analyse the effects of mutations where hydrophobic residues are replaced by residues capable of establishing hydrogen bonds. The large increase in stabilization (-12.1 kJ mol-1) of the mutation Phe14Asn arises from two factors: a reverse hydrophobic effect and the formation of a good N-cap at alpha-helix 1. In addition, a forward-backward hydrogen-bonding pattern, resembling an N-capping box and involving Asn14 and Arg18, has been found. The two Val to Thr mutations at the hydrophobic core have different thermodynamic effects: the mutation Val21Thr does not affect the stability of the protein while the mutation Val86Thr causes a small destabilization of 1.7 kJ mol-1. At site 21 a backward side chain-to-backbone hydrogen bond is formed inside alpha-helix 1 with the carbonyl O atom of the i - 4 residue without movement of the mutated side chain. The destabilizing effect of introducing a polar group in the core is efficiently compensated for by the formation of an extra hydrogen bond. At site 86 the new Ogamma atom escapes from the hydrophobic environment by a chi1 rotation into an adjacent hydrophilic cavity to form a new hydrogen bond. In this case the isosteric Val to Thr substitution is disruptive but the loss in stabilization energy is partly compensated by the formation of a hydrogen bond. The two crystal structures described in this work underline the significance of the hydrogen-bond component to protein stability. | ||
- | + | Structure analysis of two CheY mutants: importance of the hydrogen-bond contribution to protein stability.,Wilcock D, Pisabarro MT, Lopez-Hernandez E, Serrano L, Coll M Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):378-85. PMID:9761905<ref>PMID:9761905</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1ab6" style="background-color:#fffaf0;"></div> | |
- | + | ||
==See Also== | ==See Also== | ||
- | *[[Chemotaxis protein|Chemotaxis protein]] | + | *[[Chemotaxis protein 3D structures|Chemotaxis protein 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: Coll | + | [[Category: Large Structures]] |
- | [[Category: Lopez-Hernandez | + | [[Category: Coll M]] |
- | [[Category: Pisabarro | + | [[Category: Lopez-Hernandez E]] |
- | [[Category: Serranno | + | [[Category: Pisabarro MT]] |
- | [[Category: Wilcock | + | [[Category: Serranno L]] |
- | + | [[Category: Wilcock D]] | |
- | + | ||
- | + | ||
- | + |
Current revision
STRUCTURE OF CHEY MUTANT F14N, V86T
|