Journal:JBSD:38
From Proteopedia
(Difference between revisions)

| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
<StructureSection load='' size='450' side='right' scene='Journal:JBSD:38/Cv/1' caption=''> | <StructureSection load='' size='450' side='right' scene='Journal:JBSD:38/Cv/1' caption=''> | ||
=== Memory-Enhancement by Traditional Chinese Medicine? === | === Memory-Enhancement by Traditional Chinese Medicine? === | ||
| - | <big>I-Chi Hung, Su-sen Chang, Pei-Chun, Chang, Cheng-Chun Lee, Calvin Yu-Chian Chen</big> <ref> | + | <big>I-Chi Hung, Su-sen Chang, Pei-Chun, Chang, Cheng-Chun Lee, Calvin Yu-Chian Chen</big> <ref>doi 10.1080/07391102.2012.741052</ref> |
<hr/> | <hr/> | ||
<b>Molecular Tour</b><br> | <b>Molecular Tour</b><br> | ||
| - | Cognitive impairment is an emerging issue and increasing research points to the significant role of insulin-like growth factor I (IGF-I) in cognitive brain functions. <scene name='Journal:JBSD:38/Cv/3'>IGF receptor </scene> (IGF-IR, PDB ID: [[3i81]]) activation is critical for IGF-I to elicit desirable cognitive functions. Traditional Chinese medicine (TCM) ligands <scene name='Journal:JBSD:38/Cv/2'>3-(2-carboxyphenyl)-4(3H)-quinazolinone</scene> (orgin: ''Isatisin digotica''), <scene name='Journal:JBSD:38/Cv/4'>(+)-N-methyllaurotetanine</scene> (origin: ''Lindera aggregate''), and <scene name='Journal:JBSD:38/Cv/5'>(+)-1(R)-Coclaurine</scene> (origin: ''Nelumbonucifera Gaertn'') showed high binding affinity towards IGF-IR at the binding site defined by the control in PDB ID: [[3i81]]. Molecular dynamics simulation revealed that the TCM ligands were secured at the opening of the IGF-IR binding site for the duration of the MD. <scene name='Journal:JBSD:38/Cv/7'>3-(2-carboxyphenyl)-4(3H)-quinazolinone</scene> was stabilized by <scene name='Journal:JBSD:38/Cv/8'>Asp1056</scene>, <scene name='Journal:JBSD:38/Cv/9'>(+)-N-methyllaurotetanine</scene> was stabilized by <scene name='Journal:JBSD:38/Cv/10'>Leu975 and Asp1056</scene>, and <scene name='Journal:JBSD:38/Cv/11'>(+)-1(R)-Coclaurine</scene> was stabilized by <scene name='Journal:JBSD:38/Cv/12'>Leu975 and Gly1055</scene>. Four different quantitative-structure activity relationship models consistently predicted bioactivity of the TCM ligands towards IGF-IR. In summary, the TCM candidates exhibit drug-like potential in both structural-based and ligand-based properties and may have potential for further applications in enhancing cognition. | + | Cognitive impairment is an emerging issue and increasing research points to the significant role of insulin-like growth factor I (IGF-I) in cognitive brain functions. <scene name='Journal:JBSD:38/Cv/3'>IGF receptor </scene> (IGF-IR, PDB ID: [[3i81]], <font color='darkmagenta'><b>colored in darkmagenta</b></font>) activation is critical for IGF-I to elicit desirable cognitive functions. Traditional Chinese medicine (TCM) ligands <scene name='Journal:JBSD:38/Cv/2'>3-(2-carboxyphenyl)-4(3H)-quinazolinone</scene> (orgin: ''Isatisin digotica'', <span style="color:lime;background-color:black;font-weight:bold;">colored in green</span>), <scene name='Journal:JBSD:38/Cv/4'>(+)-N-methyllaurotetanine</scene> (origin: ''Lindera aggregate'', <span style="color:deeppink;background-color:black;font-weight:bold;">colored in deeppink</span>), and <scene name='Journal:JBSD:38/Cv/5'>(+)-1(R)-Coclaurine</scene> (origin: ''Nelumbonucifera Gaertn'', <span style="color:salmon;background-color:black;font-weight:bold;">colored in salmon</span>) showed high binding affinity towards IGF-IR at the binding site defined by the control in PDB ID: [[3i81]]. Molecular dynamics simulation revealed that the TCM ligands were secured at the opening of the IGF-IR binding site for the duration of the MD. <scene name='Journal:JBSD:38/Cv/7'>3-(2-carboxyphenyl)-4(3H)-quinazolinone</scene> was stabilized by <scene name='Journal:JBSD:38/Cv/8'>Asp1056</scene>, <scene name='Journal:JBSD:38/Cv/9'>(+)-N-methyllaurotetanine</scene> was stabilized by <scene name='Journal:JBSD:38/Cv/10'>Leu975 and Asp1056</scene>, and <scene name='Journal:JBSD:38/Cv/11'>(+)-1(R)-Coclaurine</scene> was stabilized by <scene name='Journal:JBSD:38/Cv/12'>Leu975 and Gly1055</scene> (<span style="color:yellow;background-color:black;font-weight:bold;">key residues are colored in yellow</span>). Four different quantitative-structure activity relationship models consistently predicted bioactivity of the TCM ligands towards IGF-IR. In summary, the TCM candidates exhibit drug-like potential in both structural-based and ligand-based properties and may have potential for further applications in enhancing cognition. |
</StructureSection> | </StructureSection> | ||
<references/> | <references/> | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
Current revision
| |||||||||||
- ↑ Hung IC, Chang SS, Chang PC, Lee CC, Chen CY. Memory enhancement by traditional Chinese medicine? J Biomol Struct Dyn. 2012 Dec 19. PMID:23249175 doi:10.1080/07391102.2012.741052
This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.
