1k97
From Proteopedia
(Difference between revisions)
m (Protected "1k97" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1k97.png|left|200px]] | ||
- | + | ==Crystal Structure of E. coli Argininosuccinate Synthetase in complex with Aspartate and Citrulline== | |
+ | <StructureSection load='1k97' size='340' side='right'caption='[[1k97]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1k97]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1K97 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1K97 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ASP:ASPARTIC+ACID'>ASP</scene>, <scene name='pdbligand=CIR:CITRULLINE'>CIR</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1k97 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1k97 OCA], [https://pdbe.org/1k97 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1k97 RCSB], [https://www.ebi.ac.uk/pdbsum/1k97 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1k97 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/ASSY_ECOLI ASSY_ECOLI] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k9/1k97_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1k97 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Argininosuccinate synthetase (AS) is the rate-limiting enzyme of both the urea and arginine-citrulline cycles. In mammals, deficiency of AS leads to citrullinemia, a debilitating and often fatal autosomal recessive urea cycle disorder, whereas its overexpression for sustained nitric oxide production via the arginine-citrulline cycle leads to the potentially fatal hypotension associated with septic and cytokine-induced circulatory shock. RESULTS: The crystal structure of E. coli AS (EAS) has been determined by the use of selenomethionine incorporation and MAD phasing. The structure has been refined at 1.6 A resolution in the absence of its substrates and at 2.0 A in the presence of aspartate and citrulline (EAS*CIT+ASP). Each monomer of this tetrameric protein has two structural domains: a nucleotide binding domain similar to that of the "N-type" ATP pyrophosphatase class of enzymes, and a novel catalytic/multimerization domain. The EAS*CIT+ASP structure clearly describes the binding of citrulline at the cleft between the two domains and of aspartate to a loop of the nucleotide binding domain, whereas homology modeling with the N-type ATP pyrophosphatases has provided the location of ATP binding. CONCLUSIONS: The first three-dimensional structures of AS are reported. The fold of the nucleotide binding domain confirms AS as the fourth structurally defined member of the N-type ATP pyrophosphatases. The structures identify catalytically important residues and suggest the requirement for a conformational change during the catalytic cycle. Sequence similarity between the bacterial and human enzymes has been used for providing insight into the structural and functional effects of observed clinical mutations. | ||
- | + | The 1.6 A crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis.,Lemke CT, Howell PL Structure. 2001 Dec;9(12):1153-64. PMID:11738042<ref>PMID:11738042</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1k97" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | == | + | __TOC__ |
- | < | + | </StructureSection> |
- | + | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Howell PL]] |
- | [[Category: | + | [[Category: Lemke CT]] |
- | + |
Current revision
Crystal Structure of E. coli Argininosuccinate Synthetase in complex with Aspartate and Citrulline
|