1ni2
From Proteopedia
(Difference between revisions)
m (Protected "1ni2" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1ni2.png|left|200px]] | ||
- | + | ==Structure of the active FERM domain of Ezrin== | |
+ | <StructureSection load='1ni2' size='340' side='right'caption='[[1ni2]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1ni2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NI2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1NI2 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ni2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ni2 OCA], [https://pdbe.org/1ni2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ni2 RCSB], [https://www.ebi.ac.uk/pdbsum/1ni2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ni2 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/EZRI_HUMAN EZRI_HUMAN] Probably involved in connections of major cytoskeletal structures to the plasma membrane. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis.<ref>PMID:17881735</ref> <ref>PMID:18270268</ref> <ref>PMID:19111582</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ni/1ni2_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ni2 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins that cross-link the actin cytoskeleton to the plasma membrane and also may function in signaling cascades that regulate the assembly of actin stress fibers. Here, we report a crystal structure for the free (activated) FERM domain (residues 2-297) of recombinant human ezrin at 2.3 A resolution. Structural comparison among the dormant moesin FERM domain structure and the three known active FERM domain structures (radixin, moesin, and now ezrin) allows the clear definition of regions that undergo structural changes during activation. The key regions affected are residues 135-150 and 155-180 in lobe F2 and residues 210-214 and 235-267 in lobe F3. Furthermore, we show that a large increase in the mobilities of lobes F2 and F3 accompanies activation, suggesting that their integrity is compromised. This leads us to propose a new concept that we refer to as keystone interactions. Keystone interactions occur when one protein (or protein part) contributes residues that allow another protein to complete folding, meaning that it becomes an integral part of the structure and would rarely dissociate. Such interactions are well suited for long-lived cytoskeletal protein interactions. The keystone interactions concept leads us to predict two specific docking sites within lobes F2 and F3 that are likely to bind target proteins. | ||
- | + | Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions.,Smith WJ, Nassar N, Bretscher A, Cerione RA, Karplus PA J Biol Chem. 2003 Feb 14;278(7):4949-56. Epub 2002 Nov 11. PMID:12429733<ref>PMID:12429733</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 1ni2" style="background-color:#fffaf0;"></div> | ||
- | == | + | ==See Also== |
- | [[ | + | *[[Villin|Villin]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Bretscher AP]] |
- | [[Category: | + | [[Category: Cerione RA]] |
- | [[Category: | + | [[Category: Karplus PA]] |
- | [[Category: | + | [[Category: Nassar N]] |
- | [[Category: | + | [[Category: Smith WJ]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Structure of the active FERM domain of Ezrin
|