1rcs
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1rcs.png|left|200px]] | ||
- | + | ==NMR STUDY OF TRP REPRESSOR-OPERATOR DNA COMPLEX== | |
+ | <StructureSection load='1rcs' size='340' side='right'caption='[[1rcs]]' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1rcs]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RCS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RCS FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TRP:TRYPTOPHAN'>TRP</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rcs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rcs OCA], [https://pdbe.org/1rcs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rcs RCSB], [https://www.ebi.ac.uk/pdbsum/1rcs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rcs ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/TRPR_ECOLI TRPR_ECOLI] This protein is an aporepressor. When complexed with L-tryptophan it binds the operator region of the trp operon (5'-ACTAGT-'3') and prevents the initiation of transcription. The complex also regulates trp repressor biosynthesis by binding to its regulatory region. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rc/1rcs_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rcs ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The solution structures of the complex between Escherichia coli trp holorepressor and a 20 base-pair consensus operator DNA were determined. The majority of proton chemical shifts of the trp holorepressor and operator DNA were assigned from homonuclear 2D NOESY spectra of selectively deuterated analog-operator DNA complexes and the 3D NOESY-HMQC spectrum of a uniformly 15N-labeled repressor-operator DNA complex. The structures were calculated using restrained molecular dynamics and sequential simulated annealing with 4086 NOE and other experimental constraints. The root-mean-squared deviation (RMSD) among the calculated structures and their mean is 0.9(+/- 0.3)A for the repressor backbone, 1.1(+/- 0.5)A for the DNA backbone, and 1.3(+/- 0.3)A for all heavy atoms. The DNA is deformed to a significant extent from the standard B DNA structure to fit the helix-turn-helix (HTH) segment of the repressor (helices D and E) into its major grooves. Little change is found in the ABCF core of the repressor on complexation in comparison to the free repressor, but changes in the cofactor L-tryptophan binding pocket and the HTH segment are observed. The N-terminal residues (2 to 17) are found to be disordered and do not form stable interactions with DNA. Direct H-bonding to the bases of the operator DNA is consistent with all of our observed NOE constraints. Hydrogen bonds from NH eta 1 and NH eta 2 of Arg69 to O-6 and N-7 of G2 are compatible with the solution structure, as they are with the crystal structure. Other direct H-bonds from Lys72, Ala80, Ile79, Thr83 and Arg84 to base-pair functional groups can also be formed in our solution structures. | ||
- | + | The solution structures of the trp repressor-operator DNA complex.,Zhang H, Zhao D, Revington M, Lee W, Jia X, Arrowsmith C, Jardetzky O J Mol Biol. 1994 May 13;238(4):592-614. PMID:8176748<ref>PMID:8176748</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1rcs" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | == | + | __TOC__ |
- | < | + | </StructureSection> |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Zhao D]] |
- | [[Category: | + | [[Category: Zheng Z]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
NMR STUDY OF TRP REPRESSOR-OPERATOR DNA COMPLEX
|