1v9u

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "1v9u" [edit=sysop:move=sysop])
Current revision (07:29, 9 October 2024) (edit) (undo)
 
(9 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1v9u.png|left|200px]]
 
-
{{STRUCTURE_1v9u| PDB=1v9u | SCENE= }}
+
==Human Rhinovirus 2 bound to a fragment of its cellular receptor protein==
 +
<StructureSection load='1v9u' size='340' side='right'caption='[[1v9u]], [[Resolution|resolution]] 3.60&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1v9u]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Rhinovirus_A2 Rhinovirus A2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V9U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1V9U FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.6&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=DAO:LAURIC+ACID'>DAO</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1v9u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1v9u OCA], [https://pdbe.org/1v9u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1v9u RCSB], [https://www.ebi.ac.uk/pdbsum/1v9u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1v9u ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/POLG_HRV2 POLG_HRV2] Capsid proteins VP1, VP2, VP3 and VP4 form a closed capsid enclosing the viral positive strand RNA genome. VP4 lies on the inner surface of the protein shell formed by VP1, VP2 and VP3. All the three latter proteins contain a beta-sheet structure called beta-barrel jelly roll. Together they form an icosahedral capsid (T=3) composed of 60 copies of each VP1, VP2, and VP3, with a diameter of approximately 300 Angstroms. VP1 is situated at the 12 fivefold axes, whereas VP2 and VP3 are located at the quasi-sixfold axes. The capsid interacts with human VLDLR to provide virion attachment to target cell. This attachment induces virion internalization predominantly through clathrin-mediated endocytosis. VP4 and VP1 subsequently undergo conformational changes leading to the formation of a pore in the endosomal membrane, thereby delivering the viral genome into the cytoplasm.<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> VP0 precursor is a component of immature procapsids (By similarity).<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> Protein 2A is a cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA transcription.<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> Protein 2B affects membrane integrity and cause an increase in membrane permeability (By similarity).<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> Protein 2C associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity).<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> Protein 3A, via its hydrophobic domain, serves as membrane anchor (By similarity).<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> Protein 3C is a cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind co-operatively to the protease (By similarity).<ref>PMID:11034318</ref> <ref>PMID:12191477</ref> RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity).<ref>PMID:11034318</ref> <ref>PMID:12191477</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v9/1v9u_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1v9u ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Although many viral receptors have been identified, the ways in which they interact with their cognate viruses are not understood at the molecular level. We have determined the X-ray structure of a complex between calcium-containing modules of the very low-density lipoprotein receptor and the minor group human rhinovirus HRV2. The receptor binds close to the icosahedral five-fold vertex, with only one module per virus protomer. The binding face of this module is defined by acidic calcium-chelating residues and, in particular, by an exposed tryptophan that is highly conserved. The attachment site on the virus involves only residues from VP1, particularly a lysine strictly conserved in all minor group HRVs. The disposition of the attached ligand-binding repeats around the five-fold axis, together with the proximity of the N- and C-terminal ends of adjacent modules, suggests that more than one repeat in a single receptor molecule might attach simultaneously.
-
===Human Rhinovirus 2 bound to a fragment of its cellular receptor protein===
+
X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein.,Verdaguer N, Fita I, Reithmayer M, Moser R, Blaas D Nat Struct Mol Biol. 2004 May;11(5):429-34. Epub 2004 Apr 4. PMID:15064754<ref>PMID:15064754</ref>
-
{{ABSTRACT_PUBMED_15064754}}
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1v9u" style="background-color:#fffaf0;"></div>
-
==About this Structure==
+
==See Also==
-
[[1v9u]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Human_rhinovirus_a2 Human rhinovirus a2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V9U OCA].
+
*[[Human rhinovirus|Human rhinovirus]]
-
 
+
*[[Virus coat proteins 3D structures|Virus coat proteins 3D structures]]
-
==Reference==
+
== References ==
-
<ref group="xtra">PMID:015064754</ref><references group="xtra"/>
+
<references/>
 +
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
-
[[Category: Human rhinovirus a2]]
+
[[Category: Large Structures]]
-
[[Category: Blaas, D.]]
+
[[Category: Rhinovirus A2]]
-
[[Category: Fita, I.]]
+
[[Category: Blaas D]]
-
[[Category: Moser, R.]]
+
[[Category: Fita I]]
-
[[Category: Reithmayer, M.]]
+
[[Category: Moser R]]
-
[[Category: Verdaguer, N.]]
+
[[Category: Reithmayer M]]
-
[[Category: Human rhinovirus]]
+
[[Category: Verdaguer N]]
-
[[Category: Icosahedral virus]]
+
-
[[Category: Virus-protein complex]]
+
-
[[Category: Virus-receptor complex]]
+
-
[[Category: Vldl-receptor]]
+

Current revision

Human Rhinovirus 2 bound to a fragment of its cellular receptor protein

PDB ID 1v9u

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools