1x8r
From Proteopedia
(Difference between revisions)
m (Protected "1x8r" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1x8r.png|left|200px]] | ||
- | + | ==EPSPS liganded with the (S)-phosphonate analog of the tetrahedral reaction intermediate== | |
+ | <StructureSection load='1x8r' size='340' side='right'caption='[[1x8r]], [[Resolution|resolution]] 1.50Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1x8r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X8R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1X8R FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=SC1:[3R-[3A,4A,5B(S*)]]-5-(1-CARBOXY-1-PHOSPHONOETHOXY)-4-HYDROXY-3-(PHOSPHONOOXY)-1-CYCLOHEXENE-1-CARBOXYLIC+ACID'>SC1</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1x8r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1x8r OCA], [https://pdbe.org/1x8r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1x8r RCSB], [https://www.ebi.ac.uk/pdbsum/1x8r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1x8r ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/AROA_ECOLI AROA_ECOLI] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x8/1x8r_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1x8r ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway and is the target of the broad-spectrum herbicide glyphosate. Since the functionality of the shikimate pathway is vital not only for plants but also for microorganisms, EPSPS is considered a prospective target for the development of novel antibiotics. We have kinetically analyzed and determined the crystal structures of Escherichia coli EPSPS inhibited by (R)- and (S)-configured phosphonate analogues of the tetrahedral reaction intermediate. Both diastereomers are competitive inhibitors with respect to the substrates of the EPSPS reaction, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). Remarkably, the (S)-phosphonate (K(iS3P) = 750 nM), whose configuration corresponds to that of the genuine tetrahedral intermediate, is a much weaker inhibitor than the (R)-phosphonate analogue (K(iS3P) = 16 nM). The crystal structures of EPSPS liganded with the (S)- and (R)-phosphonates, at 1.5 and 1.9 A resolution, respectively, revealed that binding of the (R)-phosphonate induces conformational changes of the strictly conserved residues Arg124 and Glu341 within the active site. This appears to give rise to substantial structural alterations in the amino-terminal globular domain of the enzyme. By contrast, binding of the (S)-phosphonate renders the enzyme structure unchanged. Thus, EPSPS may facilitate the tight binding of structurally diverse ligands through conformational flexibility. Molecular docking calculations did not explain why the (R)-phosphonate is the better inhibitor. Therefore, we propose that the structural events during the open-closed transition of EPSPS are altered as a result of inhibitor action. | ||
- | + | Interaction of phosphonate analogues of the tetrahedral reaction intermediate with 5-enolpyruvylshikimate-3-phosphate synthase in atomic detail.,Priestman MA, Healy ML, Becker A, Alberg DG, Bartlett PA, Lushington GH, Schonbrunn E Biochemistry. 2005 Mar 8;44(9):3241-8. PMID:15736934<ref>PMID:15736934</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 1x8r" style="background-color:#fffaf0;"></div> | ||
- | == | + | ==See Also== |
- | [[ | + | *[[EPSP synthase 3D structures|EPSP synthase 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
- | + | </StructureSection> | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: Alberg | + | [[Category: Large Structures]] |
- | [[Category: Bartlett | + | [[Category: Alberg DG]] |
- | [[Category: Becker | + | [[Category: Bartlett PA]] |
- | [[Category: Healy | + | [[Category: Becker A]] |
- | [[Category: Priestman | + | [[Category: Healy ML]] |
- | [[Category: Schonbrunn | + | [[Category: Priestman MA]] |
- | + | [[Category: Schonbrunn E]] | |
- | + |
Current revision
EPSPS liganded with the (S)-phosphonate analog of the tetrahedral reaction intermediate
|