2h5c
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2h5c.png|left|200px]] | ||
- | + | ==0.82A resolution crystal structure of alpha-lytic protease at pH 5== | |
+ | <StructureSection load='2h5c' size='340' side='right'caption='[[2h5c]], [[Resolution|resolution]] 0.82Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2h5c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Lysobacter_enzymogenes Lysobacter enzymogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H5C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2H5C FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 0.82Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2h5c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2h5c OCA], [https://pdbe.org/2h5c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2h5c RCSB], [https://www.ebi.ac.uk/pdbsum/2h5c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2h5c ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/PRLA_LYSEN PRLA_LYSEN] | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h5/2h5c_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2h5c ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | To address questions regarding the mechanism of serine protease catalysis, we have solved two X-ray crystal structures of alpha-lytic protease (alphaLP) that mimic aspects of the transition states: alphaLP at pH 5 (0.82 A resolution) and alphaLP bound to the peptidyl boronic acid inhibitor, MeOSuc-Ala-Ala-Pro-boroVal (0.90 A resolution). Based on these structures, there is no evidence of, or requirement for, histidine-flipping during the acylation step of the reaction. Rather, our data suggests that upon protonation of His57, Ser195 undergoes a conformational change that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102 hydrogen bond in the catalytic triad is a normal ionic hydrogen bond, and not a low-barrier hydrogen bond (LBHB) as previously hypothesized. We propose that the enzyme has evolved a network of relatively short hydrogen bonds that collectively stabilize the transition states. In particular, a short ionic hydrogen bond (SIHB) between His57 Nepsilon2 and the substrate's leaving group may promote forward progression of the TI1-to-acylenzyme reaction. We provide experimental evidence that refutes use of either a short donor-acceptor distance or a downfield 1H chemical shift as sole indicators of a LBHB. | ||
- | + | Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.,Fuhrmann CN, Daugherty MD, Agard DA J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:16834383<ref>PMID:16834383</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 2h5c" style="background-color:#fffaf0;"></div> | ||
- | == | + | ==See Also== |
- | [[ | + | *[[Alpha-lytic protease 3D structures|Alpha-lytic protease 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
- | [[Category: | + | </StructureSection> |
+ | [[Category: Large Structures]] | ||
[[Category: Lysobacter enzymogenes]] | [[Category: Lysobacter enzymogenes]] | ||
- | [[Category: Agard | + | [[Category: Agard DA]] |
- | [[Category: Daugherty | + | [[Category: Daugherty MD]] |
- | [[Category: Fuhrmann | + | [[Category: Fuhrmann CN]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
0.82A resolution crystal structure of alpha-lytic protease at pH 5
|