2qrz
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2qrz.png|left|200px]] | ||
- | + | ==Cdc42 bound to GMP-PCP: Induced Fit by Effector is Required== | |
+ | <StructureSection load='2qrz' size='340' side='right'caption='[[2qrz]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2qrz]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QRZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2QRZ FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GCP:PHOSPHOMETHYLPHOSPHONIC+ACID+GUANYLATE+ESTER'>GCP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2qrz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qrz OCA], [https://pdbe.org/2qrz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2qrz RCSB], [https://www.ebi.ac.uk/pdbsum/2qrz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2qrz ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qr/2qrz_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2qrz ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | GTP-binding (G) proteins regulate the flow of information in cellular signaling pathways by alternating between a GTP-bound "active" state and a GDP-bound "inactive" state. Cdc42, a member of the Rho family of Ras-related small G-proteins, plays key roles in the regulation of cell shape, motility, and growth. Here we describe the high resolution x-ray crystal structure for Cdc42 bound to the GTP analog guanylyl beta,gamma-methylene-diphosphonate (GMP-PCP) (i.e. the presumed signaling-active state) and show that it is virtually identical to the structures for the signaling-inactive, GDP-bound form of the protein, contrary to what has been reported for Ras and other G-proteins. Especially surprising was that the GMP-PCP- and GDP-bound forms of Cdc42 did not show detectable differences in their Switch I and Switch II loops. Fluorescence studies using a Cdc42 mutant in which a tryptophan residue was introduced at position 32 of Switch I also showed that there was little difference in the Switch I conformation between the GDP- and GMP-PCP-bound states (i.e. <10%), which again differed from Ras where much larger changes in Trp-32 fluorescence were observed when comparing these two nucleotide-bound states (>30%). However, the binding of an effector protein induced significant changes in the Trp-32 emission specifically from GMP-PCP-bound Cdc42, as well as in the phosphate resonances for GTP bound to this G-protein as indicated in NMR studies. An examination of the available structures for Cdc42 complexed to different effector proteins, versus the x-ray crystal structure for GMP-PCP-bound Cdc42, provides a possible explanation for how effectors can distinguish between the GTP- and GDP-bound forms of this G-protein and ensure that the necessary conformational changes for signal propagation occur. | ||
- | + | Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42.,Phillips MJ, Calero G, Chan B, Ramachandran S, Cerione RA J Biol Chem. 2008 May 16;283(20):14153-64. Epub 2008 Mar 18. PMID:18348980<ref>PMID:18348980</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 2qrz" style="background-color:#fffaf0;"></div> | ||
- | == | + | ==See Also== |
- | [[ | + | *[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | + | [[Category: Calero G]] | |
- | + | [[Category: Cerione RA]] | |
- | + | [[Category: Chan B]] | |
- | + | [[Category: Phillips MJ]] | |
- | [[Category: G | + | |
- | [[Category: | + | |
- | [[Category: | + | |
- | [[Category: | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Cdc42 bound to GMP-PCP: Induced Fit by Effector is Required
|