4dxm
From Proteopedia
(Difference between revisions)
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal Structure of an ancestral GFP-like protein== | |
+ | <StructureSection load='4dxm' size='340' side='right'caption='[[4dxm]], [[Resolution|resolution]] 1.40Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4dxm]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DXM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4DXM FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CR8:2-[1-AMINO-2-(1H-IMIDAZOL-5-YL)ETHYL]-1-(CARBOXYMETHYL)-4-[(4-OXOCYCLOHEXA-2,5-DIEN-1-YLIDENE)METHYL]-1H-IMIDAZOL-5-OLATE'>CR8</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4dxm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dxm OCA], [https://pdbe.org/4dxm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4dxm RCSB], [https://www.ebi.ac.uk/pdbsum/4dxm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4dxm ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the beta barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities. | ||
- | + | A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins.,Kim H, Zou T, Modi C, Dorner K, Grunkemeyer TJ, Chen L, Fromme R, Matz MV, Ozkan SB, Wachter RM Structure. 2015 Jan 6;23(1):34-43. doi: 10.1016/j.str.2014.11.011. PMID:25565105<ref>PMID:25565105</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 4dxm" style="background-color:#fffaf0;"></div> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Synthetic construct]] | ||
+ | [[Category: Fromme R]] | ||
+ | [[Category: Kim H]] | ||
+ | [[Category: Wachter RM]] |
Current revision
Crystal Structure of an ancestral GFP-like protein
|