|
|
(6 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | {{STRUCTURE_2p4y| PDB=2p4y | SCENE= }} | |
- | ===Crystal structure of human PPAR-gamma-ligand binding domain complexed with an indole-based modulator=== | |
- | {{ABSTRACT_PUBMED_17940191}} | |
| | | |
- | ==Disease== | + | ==Crystal structure of human PPAR-gamma-ligand binding domain complexed with an indole-based modulator== |
- | [[http://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:[http://omim.org/entry/601665 601665]]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.<ref>PMID:9753710</ref> Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:[http://omim.org/entry/604367 604367]]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.<ref>PMID:12453919</ref><ref>PMID:11788685</ref> Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:[http://omim.org/entry/137800 137800]]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. | + | <StructureSection load='2p4y' size='340' side='right'caption='[[2p4y]], [[Resolution|resolution]] 2.25Å' scene=''> |
- | | + | == Structural highlights == |
- | ==Function== | + | <table><tr><td colspan='2'>[[2p4y]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2P4Y OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2P4Y FirstGlance]. <br> |
- | [[http://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.<ref>PMID:9065481</ref><ref>PMID:16150867</ref><ref>PMID:20829347</ref> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.25Å</td></tr> |
- | | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=C03:(2R)-2-(4-CHLORO-3-{[3-(6-METHOXY-1,2-BENZISOXAZOL-3-YL)-2-METHYL-6-(TRIFLUOROMETHOXY)-1H-INDOL-1-YL]METHYL}PHENOXY)PROPANOIC+ACID'>C03</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
- | ==About this Structure== | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2p4y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2p4y OCA], [https://pdbe.org/2p4y PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2p4y RCSB], [https://www.ebi.ac.uk/pdbsum/2p4y PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2p4y ProSAT]</span></td></tr> |
- | [[2p4y]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2P4Y OCA]. | + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:[https://omim.org/entry/601665 601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.<ref>PMID:9753710</ref> Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:[https://omim.org/entry/604367 604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.<ref>PMID:12453919</ref> <ref>PMID:11788685</ref> Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:[https://omim.org/entry/137800 137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.<ref>PMID:9065481</ref> <ref>PMID:16150867</ref> <ref>PMID:20829347</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/p4/2p4y_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2p4y ConSurf]. |
| + | <div style="clear:both"></div> |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Peroxisome Proliferator-Activated Receptors|Peroxisome Proliferator-Activated Receptors]] | + | *[[Peroxisome proliferator-activated receptor 3D structures|Peroxisome proliferator-activated receptor 3D structures]] |
- | | + | == References == |
- | ==Reference== | + | <references/> |
- | <ref group="xtra">PMID:017940191</ref><references group="xtra"/><references/>
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: McKeever, B M.]] | + | [[Category: Large Structures]] |
- | [[Category: Alpha helix sandwich]] | + | [[Category: McKeever BM]] |
- | [[Category: Lbd]]
| + | |
- | [[Category: Ligand binding domain]]
| + | |
- | [[Category: Nuclear receptor]]
| + | |
- | [[Category: Partial agonist]]
| + | |
- | [[Category: Ppar-homodimer]]
| + | |
- | [[Category: Sppargm]]
| + | |
- | [[Category: Transcription]]
| + | |
| Structural highlights
Disease
PPARG_HUMAN Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.
Function
PPARG_HUMAN Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998 Oct 1;339(14):953-9. PMID:9753710 doi:10.1056/NEJM199810013391403
- ↑ Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002 Dec;51(12):3586-90. PMID:12453919
- ↑ Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002 Jan;87(1):408-11. PMID:11788685
- ↑ Mukherjee R, Jow L, Croston GE, Paterniti JR Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997 Mar 21;272(12):8071-6. PMID:9065481
- ↑ Yin Y, Yuan H, Wang C, Pattabiraman N, Rao M, Pestell RG, Glazer RI. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006 Feb;20(2):268-78. Epub 2005 Sep 8. PMID:16150867 doi:10.1210/me.2005-0197
- ↑ Park SH, Choi HJ, Yang H, Do KH, Kim J, Lee DW, Moon Y. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2010 Nov 12;285(46):35330-9. doi: 10.1074/jbc.M110.136259. Epub 2010, Sep 9. PMID:20829347 doi:10.1074/jbc.M110.136259
|