3kuc
From Proteopedia
(Difference between revisions)
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{STRUCTURE_3kuc| PDB=3kuc | SCENE= }} | ||
- | ===Complex of Rap1A(E30D/K31E)GDP with RafRBD(A85K/N71R)=== | ||
- | {{ABSTRACT_PUBMED_20361980}} | ||
- | == | + | ==Complex of Rap1A(E30D/K31E)GDP with RafRBD(A85K/N71R)== |
- | [[ | + | <StructureSection load='3kuc' size='340' side='right'caption='[[3kuc]], [[Resolution|resolution]] 1.92Å' scene=''> |
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3kuc]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KUC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3KUC FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.92Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kuc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kuc OCA], [https://pdbe.org/3kuc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kuc RCSB], [https://www.ebi.ac.uk/pdbsum/3kuc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kuc ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/RAP1A_HUMAN RAP1A_HUMAN] Induces morphological reversion of a cell line transformed by a Ras oncogene. Counteracts the mitogenic function of Ras, at least partly because it can interact with Ras GAPs and RAF in a competitive manner. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ku/3kuc_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3kuc ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. | ||
- | + | What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.,Filchtinski D, Sharabi O, Ruppel A, Vetter IR, Herrmann C, Shifman JM J Mol Biol. 2010 Jun 11;399(3):422-35. Epub 2010 Mar 31. PMID:20361980<ref>PMID:20361980</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
+ | <div class="pdbe-citations 3kuc" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
- | + | *[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] | |
- | *[[GTP-binding protein|GTP-binding protein]] | + | *[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] |
- | *[[ | + | == References == |
- | + | <references/> | |
- | == | + | __TOC__ |
- | + | </StructureSection> | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Filchtinski | + | [[Category: Filchtinski D]] |
- | [[Category: Herrmann | + | [[Category: Herrmann C]] |
- | [[Category: Rueppel | + | [[Category: Rueppel A]] |
- | [[Category: Sharabi | + | [[Category: Sharabi O]] |
- | [[Category: Shifman | + | [[Category: Shifman JM]] |
- | [[Category: Vetter | + | [[Category: Vetter IR]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Complex of Rap1A(E30D/K31E)GDP with RafRBD(A85K/N71R)
|