1g1c
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{STRUCTURE_1g1c| PDB=1g1c | SCENE= }} | ||
- | ===I1 DOMAIN FROM TITIN=== | ||
- | {{ABSTRACT_PUBMED_11525170}} | ||
- | == | + | ==I1 DOMAIN FROM TITIN== |
- | [[http://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN | + | <StructureSection load='1g1c' size='340' side='right'caption='[[1g1c]], [[Resolution|resolution]] 2.10Å' scene=''> |
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1g1c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G1C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G1C FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g1c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g1c OCA], [https://pdbe.org/1g1c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g1c RCSB], [https://www.ebi.ac.uk/pdbsum/1g1c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g1c ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Defects in TTN are the cause of hereditary myopathy with early respiratory failure (HMERF) [MIM:[https://omim.org/entry/603689 603689]; also known as Edstrom myopathy. HMERF is an autosomal dominant, adult-onset myopathy with early respiratory muscle involvement.<ref>PMID:15802564</ref> Defects in TTN are the cause of familial hypertrophic cardiomyopathy type 9 (CMH9) [MIM:[https://omim.org/entry/613765 613765]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:10462489</ref> Defects in TTN are the cause of cardiomyopathy dilated type 1G (CMD1G) [MIM:[https://omim.org/entry/604145 604145]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11846417</ref> <ref>PMID:11788824</ref> <ref>PMID:16465475</ref> Defects in TTN are the cause of tardive tibial muscular dystrophy (TMD) [MIM:[https://omim.org/entry/600334 600334]; also known as Udd myopathy. TMD is an autosomal dominant, late-onset distal myopathy. Muscle weakness and atrophy are usually confined to the anterior compartment of the lower leg, in particular the tibialis anterior muscle. Clinical symptoms usually occur at age 35-45 years or much later.<ref>PMID:12145747</ref> <ref>PMID:12891679</ref> Defects in TTN are the cause of limb-girdle muscular dystrophy type 2J (LGMD2J) [MIM:[https://omim.org/entry/608807 608807]. LGMD2J is an autosomal recessive degenerative myopathy characterized by progressive weakness of the pelvic and shoulder girdle muscles. Severe disability is observed within 20 years of onset. Defects in TTN are the cause of early-onset myopathy with fatal cardiomyopathy (EOMFC) [MIM:[https://omim.org/entry/611705 611705]. Early-onset myopathies are inherited muscle disorders that manifest typically from birth or infancy with hypotonia, muscle weakness, and delayed motor development. EOMFC is a titinopathy that, in contrast with the previously described examples, involves both heart and skeletal muscle, has a congenital onset, and is purely recessive. This phenotype is due to homozygous out-of-frame TTN deletions, which lead to a total absence of titin's C-terminal end from striated muscles and to secondary CAPN3 depletion.<ref>PMID:17444505</ref> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase.<ref>PMID:9804419</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g1/1g1c_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g1c ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: The giant muscle protein titin contributes to the filament system in skeletal and cardiac muscle cells by connecting the Z disk and the central M line of the sarcomere. One of the physiological functions of titin is to act as a passive spring in the sarcomere, which is achieved by the elastic properties of its central I band region. Titin contains about 300 domains of which more than half are folded as immunoglobulin-like (Ig) domains. Ig domain segments of the I band of titin have been extensively used as templates to investigate the molecular basis of protein elasticity. RESULTS: The structure of the Ig domain I1 from the I band of titin has been determined to 2.1 A resolution. It reveals a novel, reversible disulphide bridge, which is neither required for correct folding nor changes the chemical stability of I1, but it is predicted to contribute mechanically to the elastic properties of titin in active sarcomeres. From the 92 Ig domains in the longest isoform of titin, at least 40 domains have a potential for disulphide bridge formation. CONCLUSIONS: We propose a model where the formation of disulphide bridges under oxidative stress conditions could regulate the elasticity of the I band in titin by increasing sarcomeric resistance. In this model, the formation of the disulphide bridge could refrain a possible directed motion of the two beta sheets or other mechanically stable entities of the I1 Ig domain with respect to each other when exposed to mechanical forces. | ||
- | + | Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin.,Mayans O, Wuerges J, Canela S, Gautel M, Wilmanns M Structure. 2001 Apr 4;9(4):331-40. PMID:11525170<ref>PMID:11525170</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
+ | <div class="pdbe-citations 1g1c" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
- | *[[Titin|Titin]] | + | *[[Titin 3D structures|Titin 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: Gautel | + | [[Category: Large Structures]] |
- | [[Category: Mayans | + | [[Category: Gautel M]] |
- | [[Category: Wilmanns | + | [[Category: Mayans O]] |
- | [[Category: Wuerges | + | [[Category: Wilmanns M]] |
- | + | [[Category: Wuerges J]] | |
- | + | ||
- | + | ||
- | + |
Current revision
I1 DOMAIN FROM TITIN
|